A Perimidin Derivative with Multiple Redox Centers as an Anode for Lithium-ion Batteries
- Corresponding author: Chuan-Fu SUN, cfsun@fjirsm.ac.cn
Citation: Yu-Ru FU, Qin LIU, Chuan-Fu SUN. A Perimidin Derivative with Multiple Redox Centers as an Anode for Lithium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 263-268. doi: 10.14102/j.cnki.0254–5861.2011–2458
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
doi: 10.1038/451652a
Roselin, L. S.; Juang, R. S.; Hsieh, C. T.; Sagadevan, S.; Umar, A.; Selvin, R.; Hegazy, H. H. Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials (Basel, Switzerland) 2019, 12, 1229–1274.
doi: 10.3390/ma12081229
Liu, D. Q.; Liu, Z. J.; Li, X. W.; Xie, W. H.; Wang, Q.; Liu, Q. M.; Fu, Y. J.; He, D. Y. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 2017, 13, 1702000.
doi: 10.1002/smll.201702000
Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.
doi: 10.1039/c3ee40709h
Lu, Y.; Zhang, Q.; Li, L.; Niu, Z. Q.; Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem. 2018, 4, 2786–2813.
doi: 10.1016/j.chempr.2018.09.005
Xie, J.; Zhang, Q. C. Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J. Mater. Chem. A 2016, 4, 7091–7106.
doi: 10.1039/C6TA01069E
Peng, C. X.; Ning, G. H.; Su, J.; Zhong, G. M.; Tang, W.; Tian, B. B.; Su, C. L.; Yu, D. Y.; Zu, L. H.; Yang, J. H. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2017, 2, 17074.
doi: 10.1038/nenergy.2017.74
Liang, Y. L.; Zhang, P.; Yang, S. Q.; Tao, Z. L.; Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 600–605.
doi: 10.1002/aenm.201200947
Shen, J. R.; Hu, W. T.; Li, Y. M.; Li, L. Q.; Lv, X. J.; Zhang, L. Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. J. Alloys Compd. 2017, 701, 372–379.
doi: 10.1016/j.jallcom.2017.01.100
Zhao, F. Y.; Zhao, X.; Peng, B.; Gan, F.; Yao, M. Y.; Tan, W. J.; Dong, J.; Zhang, Q. H. Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries. Chin. Chem. Lett. 2018, 29, 1692–1697.
doi: 10.1016/j.cclet.2017.12.015
Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.
doi: 10.1038/ncomms6335
Elizabeth, C. M.; Javier, C. G.; Michel, A. Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew. Chem. Int. Ed. 2014, 126, 5445–5449.
doi: 10.1002/ange.201402402
Deunf, E.; Poizot, P.; Lestriez, B. Aqueous processing and formulation of indigo carmine positive electrode for lithium organic battery. J. Electrochem. Soc. 2019, 166, A747–A753.
doi: 10.1149/2.0941904jes
Zhou, M.; Li, W.; Gu, T. T.; Wang, K. L.; Cheng, S. C.; Jiang, K. A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries. Chem. Commun. 2015, 51, 14354–14356.
doi: 10.1039/C5CC05654C
Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.
doi: 10.1038/s41467-018-02889-7
Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 2019, 9, 1801010–1801023.
doi: 10.1002/aenm.201801010
Bai, L. Y.; Qiang, G.; Zhao, Y. L. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14106–14110.
doi: 10.1039/C6TA06449C
Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B; Li, Y. L. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 2016, 8, 5366–5375.
doi: 10.1021/acsami.5b12370
An, S. J.; Li, J. L.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76.
doi: 10.1016/j.carbon.2016.04.008
Zhao, B.; Ran, R.; Liu, M. L.; Shao, Z. P. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mat. Sci. & Eng. R 2015, 98, 1–71.
Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Edit. 2018, 57, 9443–9446.
doi: 10.1002/anie.201805540
Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem. 2015, 127, 7462–7466.
doi: 10.1002/ange.201503072
Lee, M.; Hong, J.; Seo, D. H.; Nam, D. H.; Nam, K. T.; Kang, K.; Park, C. B. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Edit. 2013, 52, 8322–8328.
doi: 10.1002/anie.201301850
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Chang Liu , Zirui Song , Xinglan Deng , Shihong Xu , Renji Zheng , Wentao Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249