Citation: Yu-Ru FU, Qin LIU, Chuan-Fu SUN. A Perimidin Derivative with Multiple Redox Centers as an Anode for Lithium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 263-268. doi: 10.14102/j.cnki.0254–5861.2011–2458 shu

A Perimidin Derivative with Multiple Redox Centers as an Anode for Lithium-ion Batteries

  • Corresponding author: Chuan-Fu SUN, cfsun@fjirsm.ac.cn
  • Received Date: 14 May 2019
    Accepted Date: 10 July 2019

    Fund Project: the National Natural Science Foundation of China 21771180the National Natural Science Foundation of China 51702318the Natural Science Foundation of Fujian Province 2018J01031

Figures(4)

  • Organic molecules are attractive electrode materials for rechargeable batteries owing to their sustainability, low cost, and light weight. In this work, we report a new organic anode, a perimidin derivative 1, 3, 5-tri(1H-perimidin-2-yl)-benzene (TPB), for lithium-ion batteries. The TPB structure contains multiple redox centers including π-conjugated benzene ring, C=N, and -NH groups and delivers a high reversible specific capacity of 300 mAh/g at 50 mA/g under a six-electron redox reaction. Moreover, TPB exhibits excellent rate capability and long-term cyclability with 98.1% capacity retention over 1500 cycles at 1000 mA/g. The results may open new opportunities for the development of low-cost and long-lifespan lithium-ion batteries.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.  doi: 10.1038/451652a

    2. [2]

      Roselin, L. S.; Juang, R. S.; Hsieh, C. T.; Sagadevan, S.; Umar, A.; Selvin, R.; Hegazy, H. H. Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials (Basel, Switzerland) 2019, 12, 1229–1274.  doi: 10.3390/ma12081229

    3. [3]

      Liu, D. Q.; Liu, Z. J.; Li, X. W.; Xie, W. H.; Wang, Q.; Liu, Q. M.; Fu, Y. J.; He, D. Y. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 2017, 13, 1702000.  doi: 10.1002/smll.201702000

    4. [4]

      Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.  doi: 10.1039/c3ee40709h

    5. [5]

      Lu, Y.; Zhang, Q.; Li, L.; Niu, Z. Q.; Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem. 2018, 4, 2786–2813.  doi: 10.1016/j.chempr.2018.09.005

    6. [6]

      Xie, J.; Zhang, Q. C. Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J. Mater. Chem. A 2016, 4, 7091–7106.  doi: 10.1039/C6TA01069E

    7. [7]

      Peng, C. X.; Ning, G. H.; Su, J.; Zhong, G. M.; Tang, W.; Tian, B. B.; Su, C. L.; Yu, D. Y.; Zu, L. H.; Yang, J. H. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2017, 2, 17074.  doi: 10.1038/nenergy.2017.74

    8. [8]

      Liang, Y. L.; Zhang, P.; Yang, S. Q.; Tao, Z. L.; Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 600–605.  doi: 10.1002/aenm.201200947

    9. [9]

      Shen, J. R.; Hu, W. T.; Li, Y. M.; Li, L. Q.; Lv, X. J.; Zhang, L. Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. J. Alloys Compd. 2017, 701, 372–379.  doi: 10.1016/j.jallcom.2017.01.100

    10. [10]

      Zhao, F. Y.; Zhao, X.; Peng, B.; Gan, F.; Yao, M. Y.; Tan, W. J.; Dong, J.; Zhang, Q. H. Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries. Chin. Chem. Lett. 2018, 29, 1692–1697.  doi: 10.1016/j.cclet.2017.12.015

    11. [11]

      Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.  doi: 10.1038/ncomms6335

    12. [12]

      Elizabeth, C. M.; Javier, C. G.; Michel, A. Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew. Chem. Int. Ed. 2014, 126, 5445–5449.  doi: 10.1002/ange.201402402

    13. [13]

      Deunf, E.; Poizot, P.; Lestriez, B. Aqueous processing and formulation of indigo carmine positive electrode for lithium organic battery. J. Electrochem. Soc. 2019, 166, A747–A753.  doi: 10.1149/2.0941904jes

    14. [14]

      Zhou, M.; Li, W.; Gu, T. T.; Wang, K. L.; Cheng, S. C.; Jiang, K. A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries. Chem. Commun. 2015, 51, 14354–14356.  doi: 10.1039/C5CC05654C

    15. [15]

      Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.  doi: 10.1038/s41467-018-02889-7

    16. [16]

      Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 2019, 9, 1801010–1801023.  doi: 10.1002/aenm.201801010

    17. [17]

      Bai, L. Y.; Qiang, G.; Zhao, Y. L. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14106–14110.  doi: 10.1039/C6TA06449C

    18. [18]

      Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B; Li, Y. L. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 2016, 8, 5366–5375.  doi: 10.1021/acsami.5b12370

    19. [19]

      An, S. J.; Li, J. L.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76.  doi: 10.1016/j.carbon.2016.04.008

    20. [20]

      Zhao, B.; Ran, R.; Liu, M. L.; Shao, Z. P. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mat. Sci. & Eng. R 2015, 98, 1–71.

    21. [21]

      Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Edit. 2018, 57, 9443–9446.  doi: 10.1002/anie.201805540

    22. [22]

      Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem. 2015, 127, 7462–7466.  doi: 10.1002/ange.201503072

    23. [23]

      Lee, M.; Hong, J.; Seo, D. H.; Nam, D. H.; Nam, K. T.; Kang, K.; Park, C. B. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Edit. 2013, 52, 8322–8328.  doi: 10.1002/anie.201301850

  • 加载中
    1. [1]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    2. [2]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    3. [3]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    4. [4]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    5. [5]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    8. [8]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    9. [9]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    10. [10]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    13. [13]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    14. [14]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    15. [15]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    16. [16]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    17. [17]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    18. [18]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    19. [19]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    20. [20]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

Metrics
  • PDF Downloads(1)
  • Abstract views(148)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return