Citation: Xiu-Fang HOU, Chuan BAI, Ya-Lei CAO, Feng FU. Boron Group Ions Direct Conversion of Carbon and Methane into Ethylene in DFT Study[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 255-262. doi: 10.14102/j.cnki.0254–5861.2011–2453 shu

Boron Group Ions Direct Conversion of Carbon and Methane into Ethylene in DFT Study

  • Corresponding author: Xiu-Fang HOU, houxf1977@126.com
  • Received Date: 13 May 2019
    Accepted Date: 5 September 2019

    Fund Project: the special steady growth science and technology foundation of Yanan Science and Technology Bureau 2017WZZ-08the doctoral research program YDBK2017-09the research program YD2016-09the research program D2018009

Figures(3)

  • In this study, density functional theory calculations reveal how boron group ions M+ (M = B, Al, Ga, In, and Tl) directly convert carbon and methane into ethylene at room temperature. M+ reacts with the carbon atom to form the cation MC+. Then, the reaction of MC+ with methane leads to the cleavage of metal–carbon bond and the formation of CH2CH2 through C–C coupling, with the ion M+ serving as a leaving group. The cycle then begins again. The mechanism of C/CH4 system catalyzed by five ion types is investigated herein, and the reasons for the different reactivity of five ion types are determined. The moderate strength of the Al+–C bond results in Al+ being the only appropriate catalyst of M+ (M = B, Al, Ga, In, and Tl) that can catalyze methane and carbon into ethylene.
  • 加载中
    1. [1]

      Ravi, M.; Ranocchiari, M.; Jeroen, A. van Bokhoven. The direct catalytic oxidation of methane to methanol-a critical assessment. Angew. Chem. Int. Ed. 2017, 56, 16464−16483.  doi: 10.1002/anie.201702550

    2. [2]

      Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; Tan, D.; Si, R.; Zhang, S.; Li, J.; Sun, L.; Tang, Z.; Pan, X.; Bao, X. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616−619.  doi: 10.1126/science.1253150

    3. [3]

      BP Energy Outlook (2018 edition). https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html.

    4. [4]

      Leonori, F.; Skouteris, D.; Petrucci, R.; Casavecchia, P.; Rosi, M.; Balucani, N. Combined crossed beam and theoretical studies of the C(1D) + CH4 reaction. J. Chem. Phys. 2013, 138, 024311−11.  doi: 10.1063/1.4773579

    5. [5]

      Jeong, G. H.; Klabunde, K. J.; Pan, O. G.; Paul, G. C.; Shevlin, P. B. Reactions of carbon atoms/clusters with methane, methyl bromide, and water at 10 and 77 K. J. Am. Chem. Soc. 1989, 111, 8784−8790.  doi: 10.1021/ja00206a003

    6. [6]

      Kim, G. S.; Nguyen, T. L.; Mebel, A. M.; Lin, S. H.; Nguyen M. T. Ab Initio/RRKM study of the potential energy surface of triplet ethylene and product branching ratios of the C(3P) + CH4 reaction. J. Phys. Chem. A 2003, 107, 1788−1796.

    7. [7]

      Yue, L.; Li, J. L.; Zhou, S. D.; Sun, X. Y.; Schlangen, M.; Shaik, S.; Schwarz, H. Control of product distribution and mechanism by ligation and electric field in the thermal activation of methane. Angew. Chem. Int. Ed. 2017, 56, 10219−10223.  doi: 10.1002/anie.201703485

    8. [8]

      Yue, L.; Zhou, S.; Sun, X.; Schlangen, M.; Schwarz, H. Direct room-temperature conversion of methane to protonated formaldehyde: the gas-phase chemistry of mercury among the zinc triad oxide cations. Angew. Chem. Int. Ed. 2018, 57, 3251−3255.  doi: 10.1002/anie.201712405

    9. [9]

      Li, J.; Zhou, S.; Schlangen, M.; Weiske, T.; Schwarz, H. Hidden hydride transfer as a decisive mechanistic step in the reactions of the unligated gold carbide [AuC]+ with methane under ambient conditions. Angew. Chem. 2016, 128, 13266−13269.  doi: 10.1002/ange.201606707

    10. [10]

      Geng, C.; Li, J.; Weiske, T.; Schlangen, M.; Shaik, S.; Schwarz, H. Electrostatic and charge-induced methane activation by a concerted double C−H bond insertion. J. Am. Chem. Soc. 2017, 139, 1684−1689.  doi: 10.1021/jacs.6b12514

    11. [11]

      Zhou, S.; Li, J.; Schlangen, M.; Schwarz, H. Differences and commonalities in the gas-phase reactions of closed-shell metal dioxide clusters [MO2]+ (M = V, Nb, and Ta) with methane. Chem. Eur. J. 2016, 22, 7225−7228.  doi: 10.1002/chem.201600498

    12. [12]

      Sun, X.; Zhou, S.; Yue, L.; Schlangen, M.; Schwarz, H. Thermal activation of CH4 and H2 as mediated by the ruthenium-oxide cluster ions [RuOx]+ (x = 1~3): on the influence of oxidation states. Chem. Eur. J. 2019, 25, 1−11.  doi: 10.1002/chem.201806054

    13. [13]

      Geng, C.; Weiske, T.; Li, J.; Shaik, S.; Schwarz, H. On the intrinsic reactivity of diatomic 3d transition-metal carbides in the thermal activation of methane: striking electronic structure effects. J. Am. Chem. Soc. 2018, 141, 599−610.

    14. [14]

      Kang, Y. K.; Park, H. S. Assessment of CCSD(T), MP2, DFT-D, CBS-QB3, and G4(MP2) methods for conformational study of alanine and proline dipeptides. Chem. Phy. Lett. 2014, 600, 112−117.  doi: 10.1016/j.cplett.2014.03.067

    15. [15]

      Pollak, P.; Weigend, F. Segmented contracted error-consistent basis sets of double- and triple‑ζ valence quality for one- and two-component relativistic all-electron calculations. J. Chem. Theory Comput. 2017, 13, 3696−3705.  doi: 10.1021/acs.jctc.7b00593

    16. [16]

      Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    17. [17]

      Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098−3100.  doi: 10.1103/PhysRevA.38.3098

    18. [18]

      Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.  doi: 10.1103/PhysRevB.37.785

    19. [19]

      Andrae, D.; Häubermann, U.; Dolg, M.; Stoll, H.; Preub, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123−141.  doi: 10.1007/BF01114537

    20. [20]

      John, A.; Martin, H. G. Quadratic configuration interaction: a general technique for determining electron correlation energies. J. Chem. Phys. 1987, 87, 5968−5975.  doi: 10.1063/1.453520

    21. [21]

      Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154−2161.  doi: 10.1063/1.456010

    22. [22]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735−746.  doi: 10.1063/1.449486

    23. [23]

      Carpenter, J. E.; Weinhold, F. Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure. J. Mol. Struct. (Theochem. ) 1988, 169, 41−62.  doi: 10.1016/0166-1280(88)80248-3

    24. [24]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wave function analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    25. [25]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Annenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2013, Gaussian 09, Revision E. 01.

    26. [26]

      Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies. CRC Press Inc, Boca Raton, FL 2007, 1−1687.

    27. [27]

      Lu, T.; Chen, F. Atomic dipole moment corrected Hirshfeld population method. J. Theor. Comput. Chem. 2012, 11, 163−183.  doi: 10.1142/S0219633612500113

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    8. [8]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    9. [9]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    10. [10]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    13. [13]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    14. [14]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    15. [15]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    16. [16]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    17. [17]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    18. [18]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

Metrics
  • PDF Downloads(1)
  • Abstract views(157)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return