Citation: Pei-Pei CUI, Yong LIU, Hong-Guo ZHAI, Jian-Peng ZHU, Wen-Ning YAN, Yun-Min YANG. Two Copper-organic Frameworks Constructed from the Flexible Dicarboxylic Ligands[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 368-374. doi: 10.14102/j.cnki.0254–5861.2011–2417 shu

Two Copper-organic Frameworks Constructed from the Flexible Dicarboxylic Ligands

  • Corresponding author: Pei-Pei CUI, 1cuipeipei1@163.com
  • Received Date: 19 April 2019
    Accepted Date: 4 July 2019

    Fund Project: the National Natural Science Foundation of China 21701021the Natural Science Foundation ZR2017BEM023the Open Fund of State Key Laboratory of Coordination Chemistry of Shandong Province SKL CC1905

Figures(5)

  • Two new copper-organic frameworks [Cu4(L1)4(DMF)4·2DMF]n (DZ-1) and [Cu(L2)(DMF)]n (DZ-2) (H2L1 = 2, 2'-(1, 4-phenylenebis(methylene))bis(sulfanediyl)dinicotinic acid and H2L2 = 2, 2'-(1, 2-phenylenebis(methylene))bis(sulfanediyl)dinicotinic acid) have been synthesized and characterized. DZ-1 with a zero-dimensional structure crystallizes in monoclinic crystal system, space group P21/n with a = 17.1697(11), b = 17.1241(11), c = 18.8638(14) Å, V = 5193.2(6) Å3, Z = 2, Dc = 1.493 g·cm-3, μ = 1.046 mm-1, F(000) = 2408. All L1 ligands adopted syn-conformation. DZ-2 is a two-dimensional structure crystallized in monoclinic crystal system, space group P21/n with a = 11.855(5), b = 18.601(8), c = 12.319(5) Å, V = 2400.4(18) Å3, Z = 4, Dc = 1.514 g·cm-3, μ = 1.124 mm-1, F(000) = 1124. The selective sorption of CO2 over N2 for DZ-1 was found.
  • 加载中
    1. [1]

      Cui, Y. Y.; Zhang, J.; He, H. J.; Qian, G. D. Photonic functional metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 5740−5785.  doi: 10.1039/C7CS00879A

    2. [2]

      Dhakshinamoorthy, A.; Li, Z. H.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134−8172.  doi: 10.1039/C8CS00256H

    3. [3]

      Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayatf, T.; Wang, X. K. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322−2356.  doi: 10.1039/C7CS00543A

    4. [4]

      Kang, Y. S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang P.; Sun, W. Y. Metal-organic frameworks with catalytic centers: from synthesis to catalytic application. Coord. Chem. Rev. 2019, 378, 262−280.  doi: 10.1016/j.ccr.2018.02.009

    5. [5]

      Cui, P. P.; Wang, P.; Zhao, Y.; Sun, W. Y. Fabrication of desired metal-organic frameworks via postsynthetic exchange and sequential linker installation. Cryst. Growth Des. 2019, 19, 1454−1470.  doi: 10.1021/acs.cgd.8b01628

    6. [6]

      Cui, P. P.; Wu, J. L.; Zhao, X. L.; Sun, D.; Zhang, L. L.; Guo, J.; Sun, D. F. Two solvent-dependent zinc(Ⅱ) supramolecular isomers: rare kgd and lonsdaleite network topologies based on a tripodal flexible ligand. Cryst. Growth Des. 2011, 11, 5182−5187.  doi: 10.1021/cg201181s

    7. [7]

      Wan, X. Y.; Jiang, F. L.; Liu, C. P.; Zhou, K.; Chen, L.; Gai, Y. L.; Yang, Y.; Hong, M. C. Rapid and discriminative detection of nitro aromatic compounds with high sensitivity using two zinc MOFs synthesized through a temperature-modulated method. J. Mater. Chem. A 2015, 3, 22369−22376.  doi: 10.1039/C5TA04552E

    8. [8]

      Sun, Y. X.; Sun, W. Y. Zinc(Ⅱ)-and cadmium(Ⅱ)-organic frameworks with 1-imidazole-containing and 1-imidazolecarboxylate ligands. CrystEngComm 2015, 17, 4045−4063.  doi: 10.1039/C5CE00372E

    9. [9]

      You, L. X.; Xie, S. Y.; Xia, C. C.; Wang, S. J.; Xiong, G.; He, Y. K.; Dragutan, I.; Dragutan, V.; Fedinc, V. P.; Sun, Y. G. Unprecedented homochiral 3D lanthanide coordination polymers with triple-stranded helical architecture constructed from a rigid achiral aryldicarboxylate ligand, CrystEngComm. 2019, 21, 1758−1763.  doi: 10.1039/C8CE01242C

    10. [10]

      Dai, F. N.; Fan W. D.; Bi, J. H.; Jiang, P.; Liu, D. D.; Zhang, X. R.; Lin, H.; Gong, C. F.; Wang, R. M.; Zhang, L. L.; Sun, D. F. Lead-porphyrin metal-organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Trans. 2016, 45, 61−65.  doi: 10.1039/C5DT04025F

    11. [11]

      Lin, Z. J.; Lü, J.; Hong, M. C.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867−5895.  doi: 10.1039/C3CS60483G

    12. [12]

      Cui, P. P.; Dou, J. M.; Sun, D.; Dai, F. N.; Wang, S. N.; Sun, D. F.; Wu, Q. Y. Reaction vessel-and concentration-induced supramolecular isomerism in layered lanthanide-organic frameworks. CrystEngComm 2011, 13, 6968–6971.  doi: 10.1039/c1ce05839h

    13. [13]

      Yu, Q.; Zeng, Y. F.; Zhao, J. P.; Yang, Q.; Bu, X. H. Zeolite-like metal-organic framework based on a flexible 2-(1H-benzimidazol-2-ylthio)acetic ligand: synthesis, structures, and properties. Cryst. Growth Des. 2010, 10, 1878–1884.  doi: 10.1021/cg901571m

    14. [14]

      Baladi, E.; Nobakht, V.; Tarassoli, A.; Proserpio, D. M.; Carlucci, L. Three cationic, nonporous CuI-coordination polymers: structural investigation and vapor iodine capture. Cryst. Growth Des. 2018, 18, 7207–7218.  doi: 10.1021/acs.cgd.8b01446

    15. [15]

      Hsu, C. H.; Huang, W. C.; Yang, X. K.; Yang, C. T.; Chhetri, P. M.; Chen, J. D. Entanglement and irreversible structural transformation in Co(Ⅱ) coordination polymers based on isomeric bis-pyridyl-bis-amide ligands. Cryst. Growth Des. 2019, 19, 1728–1737.  doi: 10.1021/acs.cgd.8b01706

    16. [16]

      Zhang, X. T.; Chen, H. T.; Li, B.; Liu, G. Z.; Liu, X. Z. Construction of functional coordination polymers derived from designed flexible bis(4-carboxybenzyl)amine. CrystEngComm. 2019, 21, 1231–1241  doi: 10.1039/C8CE01418C

    17. [17]

      Das, D.; Biradha, K. Luminescent coordination polymers of naphthalene dased diamide with rigid and flexible dicarboxylates: sensing of nitro explosives, Fe(Ⅲ) Ion, and dyes. Cryst. Growth Des. 2018, 18, 3683–3692.  doi: 10.1021/acs.cgd.8b00498

    18. [18]

      Zong, Z. A.; Fan, C. B.; Zhang, X.; Meng, X. M.; Jin, F.; Fan, Y. -H. Four Co(Ⅱ) coordination polymers based on 4, 4'-(1H-1, 2, 4-triazol-1-yl)methylenebis(benzoic acid): syntheses, structural diversity, magnetic properties, dye adsorption and photocatalytic properties. CrystEngComm. 2019, 21, 673–686.  doi: 10.1039/C8CE01203B

    19. [19]

      Dai, F. N.; He, H. Y.; Xie, A. P.; Chu, G. D.; Sun, D. F.; Ke, Y. X. Self-assembly of a novel metal-organic coordination cage (MOCC) based on a new flexible dicarboxylate ligand: synthesis, crystal structure and magnetic property. CrystEngComm. 2009, 11, 47–49.  doi: 10.1039/B816015P

    20. [20]

      Dai, F. N.; Dou, J. M.; He, H. Y.; Zhao, X. L.; Sun, D. F. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands. Inorg. Chem. 2010, 49, 4117–4124.  doi: 10.1021/ic902178c

    21. [21]

      Dai, F. N.; He, H. Y.; Gao, D. L.; Ye, F.; Qiu, X. L.; Sun, D. F. Construction of copper metal-organic systems based on paddlewheel SBU through altering the substituent positions of new flexible carboxylate ligands. CrystEngComm. 2009, 11, 2516–2522.  doi: 10.1039/b904671b

    22. [22]

      Cui, P. P.; Cui, L. F.; Fu. A. Y. Three lanthanide-carboxylate coordination polymers with conformation variation based on flexible ligands: synthesis, structure and photoluminescence property. Chin. J. Inorg. Chem. 2016, 32, 1231–1238.

    23. [23]

      Cui, P. P.; Fu, A. Y.; Wang, P. Topology and photoluminescence property of a neodymium-carboxylate coordination polymer based on tripodal flexible ligand. Chin. J. Struc. Chem. 2016, 35, 1391–1398.

    24. [24]

      Yang, C.; Wong, W. T. Self-assembly of guanidinium hexagonal carboxylate: how many H-bonds and H-bonding pattern between ArCOO and C(NH2)3+. Chem. Lett. 2004, 33, 856–857.  doi: 10.1246/cl.2004.856

    25. [25]

      Yang, C.; Wong, W. T.; Chen, X. M.; Cui Y. D.; Yang, Y. S. Star hexacarboxylate: synthesis, crystal structure and luminescent properties of its terbium complex. Sci. Chin. B 2003, 46, 558–565.  doi: 10.1360/03yb0050

    26. [26]

      SAINT, Program for Data Extraction and Reduction, Bruker AXS, Inc., Madison, WI 2001.

    27. [27]

      Sheldrick, G. M. SADABS, University of Göttingen, Göttingen, Germany 2003.

    28. [28]

      Sheldrick G. M. SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany 1997.

    29. [29]

      Sheldrick G. M. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany 1997.

    30. [30]

      Thakuria, R.; Nath, N. K.; Saha, B. K. The nature and applications of π-π interactions: A perspective. Cryst. Growth Des. 2019, 19, 523–528.  doi: 10.1021/acs.cgd.8b01630

    31. [31]

      Khavasi, H. R.; Fard, M. A. π-π Interactions affect coordination geometries. Cryst. Growth Des. 2010, 10, 1892–1896.  doi: 10.1021/cg100265d

    32. [32]

      Spek, A. L. Implemented as the PLATON Procedure, a Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands 1998.

  • 加载中
    1. [1]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    2. [2]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    3. [3]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    4. [4]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    5. [5]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    6. [6]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    7. [7]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    8. [8]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    9. [9]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    10. [10]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    13. [13]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    14. [14]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    15. [15]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    19. [19]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    20. [20]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

Metrics
  • PDF Downloads(2)
  • Abstract views(171)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return