Citation: Ya-Li XUE, Dan ZHAO, Xiao-Qi CUI, Xiao-Yang HAN, Bao-Zhong LIU, Yan-Ping FAN. Crystal Structure of Scheelite-type LiTb(WO4)2 and Multi-color Emitting Properties Doped by Eu3+[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 310-320. doi: 10.14102/j.cnki.0254–5861.2011–2405 shu

Crystal Structure of Scheelite-type LiTb(WO4)2 and Multi-color Emitting Properties Doped by Eu3+

  • Corresponding author: Dan ZHAO, iamzd1996@163.com Yan-Ping FAN, fanyanping@hpu.edu.cn
  • Received Date: 16 April 2019
    Accepted Date: 3 September 2019

    Fund Project: the National Natural Science Foundation of China 51871090the National Natural Science Foundation of China U1804135the National Natural Science Foundation of China 51671080Plan for Scientific Innovation Talent of Henan Province 194200510019

Figures(8)

  • Single crystal of lithium terbium tungstate LiTb(WO4)2 has been grown by the flux method. The crystal structure was refined from single-crystal X-ray data. It crystallizes in tetragonal system, space group I41/a with a = 5.1749(9), c = 11.1953(19) Å, V = 299.81(12) Å3, Z = 2, Mr = 661.56, Dc = 7.328 g/cm3, F(000) = 560, μ(Mo) = 49.94 mm-1, R(F2 > 2σ(F2)) = 0.026 and wR(F2) = 0.070. It features a typical scheelite-type structure composed of two-direction packing of isolated WO4 tetrahedra. Li and Tb atoms in the structure occupy the same crystallographic site. Moreover, a series of solid solution phosphors LiTb1-xEux(WO4)2 (x = 0.004~0.1) were synthesized by high temperature solid-state reactions. The phosphors could be effectively excited by a wavelength range from 379 to 487 nm, which matches well with the UV and near-UV LED chip. The emission color of the phosphor can be tuned from green, through yellow to red by simply adjusting the relative Eu3+ and Tb3+ concentration due to the Tb3+ to Eu3+ energy transfer.
  • 加载中
    1. [1]

      Jiao, M. M.; Guo, N.; Lu, W.; Jia, Y. C.; Lv, W. Z.; Zhao, Q.; Shao, B. Q.; You, H. P. Tunable blue-green-emitting Ba3LaNa(PO4)3F: Eu2+, Tb3+ phosphor with energy transfer for near-UV white LEDs. Inorg. Chem. 2013, 52, 10340−10346.  doi: 10.1021/ic401033u

    2. [2]

      Nelli, I.; Kaczmarek, A. M.; Locardi, F.; Caratto, V.; Costa, G. A.; Deun, R. V. Multidoped Ln3+ gadolinium dioxycarbonates as tunable white light emitting phosphors. Dalton Trans. 2017, 46, 2785−2792.  doi: 10.1039/C6DT04629K

    3. [3]

      Morrison, G.; Smith, M. D.; Zur Loye, H. C. Flux versus hydrothermal growth: polymorphism of A2(UO2)Si2O6 (A = Rb, Cs). Inorg. Chem. 2017, 56, 1053−1056.  doi: 10.1021/acs.inorgchem.6b02931

    4. [4]

      Zhang, F.; Zhang, T.; Li, G.; Zhang, W. Single phase M+ (M = Li, Na, K), Dy3+ co-doped KSrBP2O8 white light emitting phosphors. J. Alloys Compd. 2015, 618, 484−487.  doi: 10.1016/j.jallcom.2014.08.178

    5. [5]

      Taşcıoğlu, S.; Pekgözlü, İ.; Mergen, A. Synthesis and photoluminescence properties of Pb2+ doped SrAl2B2O7. Mater. Chem. Phys. 2018, 112, 78−82.

    6. [6]

      Dhanaraj, J.; Jagannathan, R.; Trivedi, D. C. Y2O2S: Eu3+ nanocrystals-synthesis and luminescent properties. J. Mater. Chem. 2003, 13, 1778−1782.  doi: 10.1039/B302073H

    7. [7]

      Bi, W.; Meng, Q. Y.; Sun, W. J. Luminescent properties and energy transfer mechanism of NaGd(MoO4)2: Sm3+, Eu3+ phosphors. Ceram. Int. 2016, 42, 14086−14093.  doi: 10.1016/j.ceramint.2016.06.017

    8. [8]

      Zhao, D.; Cui, J. Y.; Han, H. X.; Li, C. K8Nb7P7O39: a new type of complicated incommensurately modulated structure and photoluminescence properties of Eu3+-doped solid solutions. J. Mater. Chem. C 2016, 4, 11436−11448.  doi: 10.1039/C6TC03022J

    9. [9]

      Han, B.; Zhang, J.; Li, P.; Li, J.; Bian, Y.; Shi, H. L. Luminescence and energy transfer of emission tunable phosphors YBa3B9O18: Ce3+, Tb3+. Optik 2015, 126, 1851−1854.  doi: 10.1016/j.ijleo.2015.05.003

    10. [10]

      Yawalkar, M. M.; Nair, G. B.; Zade, G. D.; Dhoble, S. J. Effect of the synthesis route on the luminescence properties of Eu3+ activated Li6M(BO3)3 (M = Y, Gd) phosphors. Mater. Chem. Phys. 2017, 189, 136−145.  doi: 10.1016/j.matchemphys.2016.12.006

    11. [11]

      Yoon, S. J.; Hakeem, D. A.; Park, K. Synthesis and photoluminescence properties of MgAl2O4: Eu3+ phosphors. Ceram. Int. 2016, 42, 1261−1266.  doi: 10.1016/j.ceramint.2015.09.059

    12. [12]

      Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha, J. Tuning the emission colour in mixed lanthanide microporous silicates: energy transfer, composition and chromaticity. J. Mater. Chem. 2018, 18, 1100−1107.

    13. [13]

      Zhang, F.; Xie, J.; Li, G.; Zhang, W.; Wang, Y.; Huang, Y.; Tao, Y. Cation composition sensitive visible quantum cutting behavior of high-efficiency green phosphors Ca9Ln(PO4)7: Tb3+ (Ln = Y, La, Gd). J. Mater. Chem. C 2017, 5, 872−881.  doi: 10.1039/C6TC03982K

    14. [14]

      Xue, Y. L.; Zhao, D.; Shi, C. L.; Liu, B. Z.; Zhao, J.; Li, F. F. Energy transfer and green emitting properties of solid solution PbGd1-xTbxB7O13 (x = 0~1). Chin. J. Struct. Chem. 2018, 37, 1279−1286

    15. [15]

      Xu, Z. H.; Li, C. X.; Li, G. G.; Chai, R. T.; Peng, C.; Yang D. M.; Lin, J. Self-assembled 3D urchin-like NaY(MoO4)2: Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C 2010, 114, 2573−2582.  doi: 10.1021/jp9115029

    16. [16]

      Nazarov, M. V.; Jeon, D. Y.; Kang, J. H.; Popovici, E. J.; Muresan, L. E.; Zamoryanskaya, M. V.; Tsukerblat, B. S. Luminescence properties of europium-terbium double activated calcium tungstate phosphor. Solid State Commun. 2004, 131, 307−311.  doi: 10.1016/j.ssc.2004.05.025

    17. [17]

      Moadhen, A.; Elhouichet, H.; Canut, B.; Sandu, C. S.; Queslati, M.; Roger, J. A. Evidence for energy transfer between Eu3+ and Tb3+ in aporous silicon matrix. Mater. Sci. Eng. B 2003, 105, 157−160.  doi: 10.1016/j.mseb.2003.08.036

    18. [18]

      Kim Annh, T.; Ngoc, T.; Thu Nga, P.; Bitch, V. T.; Long, P.; Strek, W. J. Energy transfer between Tb3+ and Eu3+ in Y2O3 crystals. J. Lumin. 1988, 39, 215−221.  doi: 10.1016/0022-2313(88)90032-4

    19. [19]

      Shi, P. L.; Xia, Z. G.; Molokeev, M. S.; Atuchin, V. V. Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 2014, 43, 9669−9676.  doi: 10.1039/C4DT00339J

    20. [20]

      Durairajan, A.; Thangaraju, D.; Babu, S. M.; Valente, M. A. Luminescence characterization of sol-gel derived Pr3+ doped NaGd(WO4)2 phosphors for solid-state lighting applications. Mater. Chem. Phys. 2016, 179, 295−303.  doi: 10.1016/j.matchemphys.2016.05.042

    21. [21]

      Zhao, D.; Zhao, E. X.; Xin, X.; Li, F. F. Single-crystal structure and bond structure of Scheelite-like KGd(MoO4)2. Chin. J. Inorg. Chem. 2014, 30, 1143−1150.

    22. [22]

      Rudowicz, C.; Karbowiak, M.; Gnutek, P.; Lewandowska, M. Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2 crystals: Ⅱ. Pr3+ and Nd3+ ions in KRE(WO4)2 (RE = Y or Gd), Pr3+ ions in M+Bi(XO4)2 (M+ = Li or Na and X = W or Mo), and Nd3+ ions in NaBi(WO4)2 and AgNd(WO4)2. J. Phys. : Condens. Matter. 2014, 26, 065501−15.  doi: 10.1088/0953-8984/26/6/065501

    23. [23]

      Han, S. J.; Bai, C. Y.; Zhang, B. B.; Yang, Z. H.; Pan, S. L. Synthesis, structure and optical properties of two isotypic crystals, Na3MO4Cl (M = W, Mo). J. Solid State Chem. 2016, 237, 14−18.  doi: 10.1016/j.jssc.2016.01.009

    24. [24]

      Zhao, D.; Shi, J. C.; Nie, K. C.; Zhang, R. J. Crystal structure and luminescent properties of two lithium lanthanide tungstate LiLn(WO4)2 (Ln = Sm, Eu). Optik. 2017, 138, 476−486.  doi: 10.1016/j.ijleo.2017.02.106

    25. [25]

      Postema, J. M.; Fu, W. T.; Ijdo, D. J. W. Crystal structure of LiLnW2O8 (Ln = lanthanides and Y): an X-ray powder diffraction study. J. Solid State Chem. 2011, 184, 2004−2008.  doi: 10.1016/j.jssc.2011.05.046

    26. [26]

      Han, S.; Wang, Y.; Jing, Q.; Wu, H.; Pan, S. L.; Yang, Z. H. Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO)3 (R = Rb, Cs). Dalton Trans. 2015, 44, 5810−5817.  doi: 10.1039/C5DT00332F

    27. [27]

      Adib, K.; Nasrabadi, M. R.; Rezvani, Z.; Pourmortazavi, S. M.; Ahmadi, F.; Naderi, H. R.; Ganjali, M. R. Facile chemical synthesis of cobalt tungstates nanoparticles as high-performance supercapacitor. J. Mater. Sci. : Mater. Electron. 2016, 27, 4541−4550.  doi: 10.1007/s10854-016-4329-4

    28. [28]

      Galceran, M.; Pujol, M. C.; Aguiló, M.; Díaz, F. Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J. Sol-Gel. Sci. Techn. 2007, 42, 79−88.  doi: 10.1007/s10971-006-1517-3

    29. [29]

      Jiang, Z. H.; Cai, P. Q.; Chen, C. L.; Pu, X. P.; Kim, S.; Seo, H. J. Facile one-step hydrothermal synthesis and luminescence properties of Eu3+-doped NaGd(WO4)2 nanophosphors. Mater. Chem. Phys. 2017, 193, 227−233.  doi: 10.1016/j.matchemphys.2017.02.032

    30. [30]

      Zhang, F.; Xie, J.; Li, G.; Zhang, W.; Wang, Y.; Huang, Y.; Tao, Y. Cation composition sensitive visible quantum cutting behavior of high-efficiency green phosphors Ca9Ln(PO4)7: Tb3+ (Ln = Y, La, Gd). J. Mater. Chem. C 2017, 5, 872−881.  doi: 10.1039/C6TC03982K

    31. [31]

      Wen, D. W.; Feng, J. J.; Li, J. H.; Shi, J. X.; Wu, M. M.; Su, Q. K2Ln(PO4)(WO4): Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tunable emission for white light-emitting diodes. J. Mater. Chem. C 2015, 3, 2107−2114.  doi: 10.1039/C4TC02406K

    32. [32]

      Si, J. Y.; Liu, N.; Song, S. Y.; Cai, G. M.; Yang, N.; Li, Z. Investigation on Eu/Tb activated photoluminescent properties of Li3Sc(BO3)2 based phosphors. J. Alloy. Compd. 2017, 719, 171−181.  doi: 10.1016/j.jallcom.2017.05.161

    33. [33]

      Sharma, A.; Varshney, M.; Shin, H. J.; Chae, K. H.; Won, S. O. XANES, EXAFS and photoluminescence investigations on the amorphous Eu: HfO2 Spectrochim. Acta A 2017, 173, 549−555.  doi: 10.1016/j.saa.2016.10.006

    34. [34]

      Park, K.; Kim, H.; Hakeem, D. A. Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca, Sr)2Al2SiO7: Eu3+ phosphors. Dyes Pigments. 2017, 136, 70−77.  doi: 10.1016/j.dyepig.2016.08.022

    35. [35]

      Zhao, D.; Ma, F. X.; Wu, Z. Q.; Zhang, L.; Wei, W.; Yang, J.; Zhang, R. H.; Chen, P. F.; Wu, S. X. Synthesis, crystal structure and characterizations of a new red phosphor K3EuB6O12. Mater. Chem. Phys. 2016, 182, 231−236.  doi: 10.1016/j.matchemphys.2016.07.027

    36. [36]

      Zhang, X. W.; Zhao, Z.; Zhang, X.; Marathe, A.; Cordes, D. B.; Weeksc, B.; Chaudhuri, J. Tunable photoluminescence and energy transfer of YBO3: Tb3+, Eu3+ for white light emitting diodes. J. Mater. Chem. C 2013, 1, 7202−7207.  doi: 10.1039/c3tc31200c

    37. [37]

      Liu, L.; Liang, Y. M.; Li, L. L.; Zou, L. C.; Gan, S. C. White light-emitting properties of NaGdF4 nanotubes through Tb3+, Eu3+doping. Cryst. Eng. Comm. 2015, 17, 7754−7761.  doi: 10.1039/C5CE01118C

    38. [38]

      Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D: Appl. Phys. 2010, 43, 354002−6.  doi: 10.1088/0022-3727/43/35/354002

    39. [39]

      Zhang, X.; Zhang, J.; Chen, Y.; Gong, M. Energy transfer and multicolor tunable emission in single-phase Tb3+, Eu3+ co-doped Sr3La(PO4)3 phosphors. Ceram. Int. 2016, 42, 13919−13924.  doi: 10.1016/j.ceramint.2016.05.202

    40. [40]

      Zhao, D.; Nie, C. K. Synthesis and multi-color luminescent properties of Tb3+/Sm3+-codoped K3Gd3B4O12 phosphor. J. Liaocheng Univ. 2019, 32, 85−89.

    41. [41]

      Qin, D.; Tang, W. J. Efficient energy transfer and tunable emission in NaLa(MoO4)(WO4): Tb3+/Eu3+ phosphors. Ceram. Int. 2016, 42, 1538−1544.  doi: 10.1016/j.ceramint.2015.09.102

    42. [42]

      Zhang, X. G.; Zhou, L. Y.; Shi, J. X.; Gong, M. L. Luminescence and energy transfer of a color tunable phosphor Tb3+, Eu3+ co-doped KCaY(PO4)2. Mater. Lett. 2014, 137, 32−35.  doi: 10.1016/j.matlet.2014.08.112

    43. [43]

      Liao, J. S.; Wang, Q.; Wen, H. R.; Yuan, H. L.; Liu, S. J.; Fu, J. X.; Qiu, B. First observation of mutual energy transfer of Mn4+-Er3+ via different excitation in Gd2ZnTiO6: Mn4+/Er3+ phosphors. J. Mater. Chem. C 2017, 5, 9098−9105.  doi: 10.1039/C7TC03045B

    44. [44]

      Liao, J. S.; Kong, L. Y.; Wang, Q.; Li, J. Q.; Peng, G. H.; Sun, Y. J.; Wen, H. R. Sol-gel preparation and near-infrared emission properties of Yb3+ sensitized by Mn4+ in double-perovskite La2ZnTiO6. Opt. Mater. 2018, 84, 82−88.  doi: 10.1016/j.optmat.2018.06.055

    45. [45]

      Xu, D.; Zhou, W.; Zhang, Z.; Ma, X.; Xia, Z. Luminescence property and energy transfer behavior of apatite-type Ca4La6(SiO4)4(PO4)2O2: Tb3+, Eu3+ phosphor. Mater. Res. Bull. 2018, 108, 101−105.  doi: 10.1016/j.materresbull.2018.08.040

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    18. [18]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    19. [19]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    20. [20]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

Metrics
  • PDF Downloads(2)
  • Abstract views(204)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return