Citation: YANG Jie, LI Shuang, WU Xue-Yuan, LONG Yi-Tao. Development of Biological Nanopore Technique in Non-gene Sequencing Application[J]. Chinese Journal of Analytical Chemistry, ;2017, 45(12): 1766-1775. doi: 10.11895/j.issn.0253-3820.171201 shu

Development of Biological Nanopore Technique in Non-gene Sequencing Application

  • Corresponding author: LONG Yi-Tao, ytlong@ecust.edu.cn
  • Received Date: 27 August 2017
    Accepted Date: 10 October 2017

    Fund Project: the Fundamental Research Funds for the Central Universities 222201717003the Innovation Program of Shanghai Municipal Education Commission 2017-01-07-00-02-E00023This work was supported by the National Natural Science Foundation of China (Nos. 21421004, 21327807), the Program of Introducing Talents of Discipline to Universities (No. B16017), the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-02-E00023) and the Fundamental Research Funds for the Central Universities (Nos. 222201718001, 222201717003)the National Natural Science Foundation of China 21421004the Fundamental Research Funds for the Central Universities 222201718001the National Natural Science Foundation of China 21327807the Program of Introducing Talents of Discipline to Universities B16017

Figures(7)

  • Nanopore technique is a low-cost, ultrafast method for single-molecule level analysis without labels. Nanopore technique was first proposed more than 20 years ago and exhibited an excellent potential in DNA sequencing. So far, the commercial development of nanopore strand-sequencing as a portable device has been realized. Meanwhile, a remarkable number of studies have demonstrated that nanopore represents versatile single-molecule sensors for a wide range of molecule. Therefore, in this article we mainly review the use of nanopore technique based on the interface interactions between biological pore and the analytes such as protein/peptide to obtain kinetic and thermodynamic information at single-molecule level. And a large number of biological molecules and metal ions are quantitatively detected by nanopore analysis, allowing its development for the future biotechnologies and medicine applications. Besides, electrochemical detection system is crucial to nanopore technique. Therefore, we focus on advancements in relative software and ultralow current instrumentations with high-bandwidth.
  • 加载中
    1. [1]

      Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc. Natl. Acad. Sci. USA, 1996, 93(24):13770-13773  doi: 10.1073/pnas.93.24.13770

    2. [2]

      Butler T Z, Pavlenok M, Derrington I M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2008, 105(52):20647-20652  doi: 10.1073/pnas.0807514106

    3. [3]

      Niederweis M. Mol. Microbiol., 2003, 49(5):1167-1177  doi: 10.1046/j.1365-2958.2003.03662.x

    4. [4]

      Wendell D, Jing P, Geng J, Subramaniam V, Lee T J, Montemagno C, Guo P. Nat. Nanotech., 2009, 4(11):765-772  doi: 10.1038/nnano.2009.259

    5. [5]

      Soskine M, Biesemans A, De Maeyer M, Maglia G. J.Am.Chem.Soc., 2013, 135(36):13456-13463  doi: 10.1021/ja4053398

    6. [6]

      Mohammad M M, Iyer R, Howard K R, Mcpike M P, Borer P N, Movileanu L. J. Am.Chem.Soc., 2012, 134(22):9521-9531  doi: 10.1021/ja3043646

    7. [7]

      Aoki T, Hirano M, Takeuchi Y, Kobayashi T, Yanagida T, Ide T. P. Jpn. Acad. B, 2010, 86(9):920-925  doi: 10.2183/pjab.86.920

    8. [8]

      Goyal P, Krasteva P V, Van Gerven N, Gubellini F, Van Den Broeck I, Troupiotis-Tsailaki A, Jonckheere W, Pehau-Arnaudet G, Pinkner J S, Chapman M R, Hultgren S J, Howorka S, Fronzes R, Remaut H. Nature, 2014, 516(7530):250-253  doi: 10.1038/nature13768

    9. [9]

      Wang H Y, Li Y, Qin L X, Heyman A, Shoseyov O, Willner I, Long Y T, Tian H. Chem. Commun., 2013, 49(17):1741-1743  doi: 10.1039/c3cc38939a

    10. [10]

      Wang Y, Montana V, Grubišić V, Stout R F, Parpura V, Gu L Q. ACS Appl. Mater. Interfaces, 2015, 7(1):184-192  doi: 10.1021/am5056596

    11. [11]

      Cao C, Ying Y L, Hu Z L, Liao D F, Tian H, Long Y T. Nat. Nanotech., 2016, 11(8):713-718  doi: 10.1038/nnano.2016.66

    12. [12]

      Cao C, Yu J, Wang Y Q, Ying Y L, Long Y T. Anal. Chem., 2016, 88(10):5046-5049  doi: 10.1021/acs.analchem.6b01514

    13. [13]

      CAO Chan, LIAO Dong-Fang, YING Yi-Lun, LONG Yi-Tao. Acta Chimica Sinica, 2016, 74(9):734-737
       

    14. [14]

      Cao C, Liao D F, Yu J, Long Y T. Nat. Protoc., 2017, 12(9):1901  doi: 10.1038/nprot.2017.077

    15. [15]

      Cao C, Yu J, Li M Y, Wang Y Q, Tian H, Long Y T. Small, 2017, DOI:10.1002/smll.201702011  doi: 10.1002/smll.201702011

    16. [16]

      Storm A J, Chen J H, Ling X S, Zandbergen H W, Dekker C. J. Appl. Phys., 2005, 98(1):014307  doi: 10.1063/1.1947391

    17. [17]

      Lin Y, Shi X, Liu S C, Ying Y L, Li Q, Gao R, Fathi F, Long Y T, Tian H. Chem. Commun., 2017, 53(25):3539-3542  doi: 10.1039/C7CC00060J

    18. [18]

      Shi X, Gao R, Ying Y L, Si W, Chen Y F, Long Y T. ACS Sensors, 2016, 1(9):1086-1090  doi: 10.1021/acssensors.6b00408

    19. [19]

      Shi X, Gao R, Ying Y L, Si W, Chen Y, Long Y T. Faraday Discuss., 2015, 184:85-99  doi: 10.1039/C5FD00060B

    20. [20]

      Ruby Dela T, Joseph L, Alon S, Amit M. Nanotechnology, 2012, 23(38):385308  doi: 10.1088/0957-4484/23/38/385308

    21. [21]

      Venkatesan B M, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R. Adv. Mater., 2009, 21(27):2771-2776  doi: 10.1002/adma.200803786

    22. [22]

      Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467(7312):190-193  doi: 10.1038/nature09379

    23. [23]

      Traversif, Raillonc, Benameur S M, Liuk, Khlybovs, Tosunm, Krasnozhond, Kisa, Radenovica. Nat. Nanotech., 2013, 8(12):939-945  doi: 10.1038/nnano.2013.240

    24. [24]

      Li J, Stein D, Mcmullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001, 412(6843):166-169  doi: 10.1038/35084037

    25. [25]

      Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M. Nat. Nanotech., 2010, 5(11):807-814  doi: 10.1038/nnano.2010.202

    26. [26]

      Chen P, Mitsui T, Farmer D B, Golovchenko J, Gordon R G, Branton D. Nano Lett., 2004, 4(7):1333-1337  doi: 10.1021/nl0494001

    27. [27]

      Zhang S, Sun T, Wang E, Wang J. Chin. Sci. Bull., 2014, 59(35):4946-4952  doi: 10.1007/s11434-014-0626-6

    28. [28]

      Jiang Y, Liu N, Guo W, Xia F, Jiang L. J. Am. Chem. Soc., 2012, 134(37):15395-15401  doi: 10.1021/ja3053333

    29. [29]

      Li P, Xie G, Kong X Y, Zhang Z, Xiao K, Wen L, Jiang L. Angew. Chem. Int. Ed., 2016, 55(50):15637-15641  doi: 10.1002/anie.201609161

    30. [30]

      Venkatesan B M, Bashir R. Nat. Nanotech., 2011, 6(10):615-624  doi: 10.1038/nnano.2011.129

    31. [31]

      Ying Y L, Zhang J, Gao R, Long Y T. Angew. Chem. Int. Ed., 2013, 52(50):13154-13161  doi: 10.1002/anie.201303529

    32. [32]

      Gao R, Ying Y L, Yan B Y, Long Y T. Chin. Sci. Bull., 2014, 59(35):4968-4973  doi: 10.1007/s11434-014-0656-0

    33. [33]

      Guo Y, Jian F, Kang X. RSC Adv., 2017, 7(25):15315-15320  doi: 10.1039/C7RA00454K

    34. [34]

      Yao F, Zhang Y, Wei Y, Kang X F. Chem. Commun., 2014, 50(89):13853-13856  doi: 10.1039/C4CC06135G

    35. [35]

      Xi D, Shang J, Fan E, You J, Zhang S, Wang H. Anal. Chem., 2016, 88(21):10540-10546  doi: 10.1021/acs.analchem.6b02620

    36. [36]

      Zhao Q, De Zoysa R S S, Wang D, Jayawardhana D A, Guan X. J. Am. Chem. Soc., 2009, 131(18):6324-6325  doi: 10.1021/ja9004893

    37. [37]

      Sutherland T C, Long Y T, Stefureac R I, Bediako Amoa I, Kraatz H B, Lee J S. Nano Lett., 2004, 4(7):1273-1277  doi: 10.1021/nl049413e

    38. [38]

      Long Y, Zhang M. Sci. China, Ser. B:Chem., 2009, 52(6):731-733  doi: 10.1007/s11426-009-0078-z

    39. [39]

      Movileanu L, Schmittschmitt J P, Martin Scholtz J, Bayley H. Biophys. J., 2005, 89(2):1030-1045  doi: 10.1529/biophysj.104.057406

    40. [40]

      Mohammad M M, Prakash S, Matouschek A, Movileanu L. J. Am. Chem. Soc., 2008, 130(12):4081-4088  doi: 10.1021/ja710787a

    41. [41]

      Merstorf C, Cressiot B, Pastoriza Gallego M, Oukhaled A, Betton J M, Auvray L, Pelta J. ACS Chem. Biol., 2012, 7(4):652-658  doi: 10.1021/cb2004737

    42. [42]

      Mereuta L, Asandei A, Seo C H, Park Y, Luchian T. ACS Appl. Mater. Interfaces, 2014, 6(15):13242-13256  doi: 10.1021/am5031177

    43. [43]

      Mereuta L, Roy M, Asandei A, Lee J, Park Y, Andricioaei I, Luchian T. Sci. Rep., 2014, 4:3885
       

    44. [44]

      Asandei A, Chinappi M, Kang H K, Seo C H, Mereuta L, Park Y, Luchian T. ACS Appl. Mater. Interfaces, 2015, 7(30):16706-16714  doi: 10.1021/acsami.5b04406

    45. [45]

      Rodriguez-Larrea D, Bayley H. Nat. Nanotech., 2013, 8(4):288-295  doi: 10.1038/nnano.2013.22

    46. [46]

      Wang H Y, Gu Z, Cao C, Wang J, Long Y T. Anal. Chem., 2013, 85(17):8254-8261  doi: 10.1021/ac401496x

    47. [47]

      Wang H Y, Ying Y L, Li Y, Kraatz H B, Long Y T. Anal. Chem., 2011, 83(5):1746-1752  doi: 10.1021/ac1029874

    48. [48]

      Hu Y X, Ying Y L, Gu Z, Cao C, Yan B Y, Wang H F, Long Y T. Chem. Commun., 2016, 52(32):5542-5545  doi: 10.1039/C6CC01292B

    49. [49]

      Wang Y, Montana V, Grubisic V, Stout R F, Jr., Parpura V, Gu L Q. ACS Appl. Mater. Interfaces, 2015, 7(1):184-192  doi: 10.1021/am5056596

    50. [50]

      Movileanu L, Howorka S, Braha O, Bayley H. Nat. Biotech., 2000, 18(10):1091-1095  doi: 10.1038/80295

    51. [51]

      Wei R, Gatterdam V, Wieneke R, Tampe R, Rant U. Nat. Nanotech., 2012, 7(4):257-263  doi: 10.1038/nnano.2012.24

    52. [52]

      Uram J D, Ke K, Hunt A J, Mayer M. Small, 2006, 2(8-9):967-972  doi: 10.1002/(ISSN)1613-6829

    53. [53]

      Takakura T, Yanagi I, Goto Y, Ishige Y, Kohara Y. Appl. Phys. Lett., 2016, 108(12):123701  doi: 10.1063/1.4944641

    54. [54]

      Jung J Y, Thornton T J, Chiari M, Kim T H. Jpn. J. Appl. Phys, 2011, 50:127002  doi: 10.7567/JJAP.50.127002

    55. [55]

      Schibel A E, Ervin E N. Langmuir, 2014, 30(37):11248-11256  doi: 10.1021/la502714b

    56. [56]

      Wang H Y, Song Z Y, Zhang H S, Chen S P. Microchim. Acta, 2016, 183(3):1003-1010  doi: 10.1007/s00604-015-1699-x

    57. [57]

      Shim J W, Tan Q, Gu L Q. Nucleic Acids Res., 2009, 37(3):972-982  doi: 10.1093/nar/gkn968

    58. [58]

      Ying Y L, Wang H Y, Sutherland T C, Long Y T. Small, 2011, 7(1):87-94  doi: 10.1002/smll.v7.1

    59. [59]

      Zhang X, Zhang J, Ying Y L, Tian H, Long Y T. Chem. Sci., 2014, 5(7):2642-2646  doi: 10.1039/c4sc00134f

    60. [60]

      Rotem D, Jayasinghe L, Salichou M, Bayley H. J. Am. Chem. Soc., 2012, 134(5):2781-2787  doi: 10.1021/ja2105653

    61. [61]

      Zhang L, Zhang K, Liu G, Liu M, Liu Y, Li J. Anal. Chem., 2015, 87(11):5677-5682  doi: 10.1021/acs.analchem.5b00791

    62. [62]

      Kawano R, Osaki T, Sasaki H, Takinoue M, Yoshizawa S, Takeuchi S. J. Am. Chem. Soc., 2011, 133(22):8474-8477  doi: 10.1021/ja2026085

    63. [63]

      Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, Wu H C. J. Am. Chem. Soc., 2011, 133(45):18312-18317  doi: 10.1021/ja206983z

    64. [64]

      Yang C, Liu L, Zeng T, Yang D, Yao Z, Zhao Y, Wu H C. Anal. Chem., 2013, 85(15):7302-7307  doi: 10.1021/ac401198d

    65. [65]

      Ying Y L, Zhang J, Meng F N, Cao C, Yao X, Willner I, Tian H, Long Y T. Sci. Rep., 2013, 3:1662  doi: 10.1038/srep01662

    66. [66]

      Meng F N, Yao X, Ying Y L, Zhang J, Tian H, Long Y T. Chem. Commun., 2015, 51(7):1202-1205  doi: 10.1039/C4CC07919A

    67. [67]

      Li T, Liu L, Li Y, Xie J, Wu H C. Angew. Chem. Int. Ed., 2015, 54(26):7568-7571  doi: 10.1002/anie.201502047

    68. [68]

      DUAN Jing, ZHUO Sha, YAO Fu-Jun, ZHANG Ya-Ni, KANG Xiao-Feng. Chinese J. Anal. Chem., 2016, 44(12):1801-1807
       

    69. [69]

      Shin S H, Bayley H. J. Am. Chem. Soc., 2005, 127(30):10462-10463  doi: 10.1021/ja052194u

    70. [70]

      Lee J, Bayley H. Proc. Natl. Acad. Sci. USA, 2015, 112(45):13768-13773  doi: 10.1073/pnas.1510565112

    71. [71]

      Rosenstein J K, Wanunu M, Merchant C A, Drndic M, Shepard K L. Nat. Methods, 2012, 9(5):487-492  doi: 10.1038/nmeth.1932

    72. [72]

      YAN Bing-Yong, GU Zhen, GAO Rui, CAO Chan, YING Yi-Lun, MA Wei, LONG Yi-Tao. Chinese J. Anal. Chem., 2015, 43(7):971-976  doi: 10.11895/j.issn.0253-3820.150159
       

    73. [73]

      Zhang J, Liu X, Ying Y L, Gu Z, Meng F N, Long Y T. Nanoscale, 2017, 9(10):3458-3465  doi: 10.1039/C6NR09135K

    74. [74]

      Gu Z, Ying Y L, Cao C, He P, Long Y T. Anal. Chem., 2015, 87(2):907-913  doi: 10.1021/ac5028758

    75. [75]

      Dunbar W B. Anal. Chem., 2015, 87(20):10650-10652  doi: 10.1021/acs.analchem.5b02281

    76. [76]

      Gu Z, Ying Y L, Yan B Y, Wang H F, He P G, Long Y T. Chin. Chem. Lett., 2014, 25(7):1029-1032  doi: 10.1016/j.cclet.2014.05.009

  • 加载中
    1. [1]

      Chenghe Yang Yi Lü Rui Liu . The Rise to Fame of Digital PCR. University Chemistry, 2025, 40(4): 340-345. doi: 10.12461/PKU.DXHX202406111

    2. [2]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    3. [3]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    4. [4]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    5. [5]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Fangqi Yang . Teaching Practice and Reflection on Contact Angle Measurement Instrument in Material Chemistry Analysis. University Chemistry, 2025, 40(11): 397-401. doi: 10.12461/PKU.DXHX202412008

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Weigang Zhu Xiaofei Ma Yun Tian Huaji Liu Fanli Lu Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113

    10. [10]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    11. [11]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(19)
  • Abstract views(1911)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return