Citation:
KONG Cong, ZHOU Zhe, WANG Yang, HUANG Yuan-Fei, SHEN Xiao-Sheng, Dong-Mei, CAI You-Qiong, YU Hui-Juan. Screening of Chemical Drugs in Fishery Inputs by Ultrahigh Performance Liquid Chromatography-Orbitrap High Resolution Mass spectroscopy[J]. Chinese Journal of Analytical Chemistry,
;2017, 45(2): 245-252.
doi:
10.11895/j.issn.0253-3820.160653
-
To screen the illegal substances in fishery inputs, we established the database including the precursor and the daughter ions for these possible components by the quadrupole/orbit-trap mass spectrometer, and the retention time of each drug on the same chromatographic column. And then, the extracted and diluted samples were analyzed and the components in the real samples were identified under the same conditions. Chromatographic analysis was performed on an Accucore RP-MS column (100 mm×2.1 mm, 2.6 μm) using gradient elution with 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phase. Elutes were ionized through heatable electrospray ionization (HESI) in both positive and negative mode simultaneously. Data acquisition was conducted by Full-scan ddMS2 (TopN) mode, in which the full mass profile for a continuous precursor ion injection and the fragments of each high abundant precursor of targeted were acquired with excellent time and mass resolution. Screening was carried out through comparison of the information of real samples with that of standards in the database, which were processed by software (Tracefinder). The Quantification of each component was analyzed based on the precursor ion chromatography acquired by orbit-trap mass spectroscopy, which showed a good linearity between 0.01-1 μg/mL, with R>0.98. The method was validated by checking its minimum screening concentration (0.5 mg/L for drugs and 5 mg/L for feedstuffs) and evaluating the recovery after addition of the standard mixture in real samples (>50%, under the addition of 10 and 100 mg/kg). The results for 68 practical samples demonstrated the effective performance of this method for screening with high-throughput, rapidness and acceptable minimum screening concentration and accuracy, in which 15 of 29 fishery drug samples were screened out for positive components that were not indicated in their labels.
-
Keywords:
- Fishery drug,
- Screen,
- High resolution mass spectroscopy
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[1]
-
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Wei Li , Jinfan Xu , Yongjun Zhang , Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013
-
[3]
Yan Long , Wenbo Zhao , Qing Cao , Xiangyu Li , Fukui Li , Yanwei Hu , Shiyu Song , Kaikai Liu . Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing. Acta Physico-Chimica Sinica, 2026, 42(3): 100198-0. doi: 10.1016/j.actphy.2025.100198
-
[4]
Qiang HU , Zhiqi CHEN , Zhong CHEN , Xu WANG , Weina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086
-
[5]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[6]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[7]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[8]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012
-
[9]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[10]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[11]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[12]
Yi RU , Tao MENG , Zhaoteng XUE , Dongsen MAO . Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 247-262. doi: 10.11862/CJIC.20250255
-
[13]
Hongsheng Tang , Yonghe Zhang , Dexiang Wang , Xiaohui Ning , Tianlong Zhang , Yan Li , Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098
-
[14]
Zhi Zheng , Qi Ma , Feiyang Liu , Gukui Chen , Junlong Zhao . Defeating Dental Plaque with Science: Unlocking the Power of Biofilm Management. University Chemistry, 2026, 41(2): 295-300. doi: 10.12461/PKU.DXHX202502088
-
[15]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[16]
Yan Li , Fei Ding , Jing Wang , Jing Nan , Yijun Li , Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097
-
[17]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[18]
Zhike Yang , Jinfan Xu , Junhao Chen , Zheng Yang , Fei Ding , Neil Qiang Su . AI NMR Assistant: A DP5-Based Intelligent System for NMR Spectral Interpretation. University Chemistry, 2026, 41(1): 20-28. doi: 10.12461/PKU.DXHX202506013
-
[19]
Jianchuan Wang , Wei Wu , Cunpu Li , Zhaohong Zuo , Luxi Tan . Exploration on the Construction of Polymer Course Groups in Non-Polymer-Related Majors. University Chemistry, 2026, 41(2): 154-160. doi: 10.12461/PKU.DXHX202502095
-
[20]
Dongxia Zhang , Sijia Hao , Jiarui Wang , Jiwei Wang , Xiaogang Dong , Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(715)
- HTML views(47)
Login In
DownLoad: