Citation: WEI Xiao-Ping, LIANG Shun-Chao, HUANG Wen-Gang, LI Jian-Ping. Study on Molecularly Imprinted Sensor Based on Photocurrent Response for Ni-complex[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 348-354. doi: 10.11895/j.issn.0253-3820.150918 shu

Study on Molecularly Imprinted Sensor Based on Photocurrent Response for Ni-complex

  • Corresponding author: LI Jian-Ping, 
  • Received Date: 16 October 2015
    Available Online: 24 November 2015

    Fund Project: 本文系国家自然科学基金(No.21375031) (No.21375031)广西自然科学基金(Nos.2015GXNSFFA139005,2015GXNSFAA139029)项目资助 (Nos.2015GXNSFFA139005,2015GXNSFAA139029)

  • A novel molecularly imprinted sensor for Ni2+ detection was fabricated based on photocurrent method. CdTe quantum dot (QDs) was selected as photoelectric material and modified in ITO electrode, then the nickel-1-(2-pyridylazo)-2-naphthol molecularly imprinted film was formed on the QDs layer by photopolymerization. By using 365 nm ultraviolet light as excitation light, the QDs generated electron-hole, and the electron donor-ascorbic acid combined with electron to form the photocurrent signals. Based on this evidence, Ni2+ was detected according to "gate-effect". The complex was characterized by Fourier transform infrared spectrum and the CdTe QDs was characterized by ultraviolet absorption spectrum and fluorescence emission spectrum, the time for elution and rebinding and the concentration of ascorbic acid in base solution were optimized. The experiment showed that there was a liner relationship between the photocurrent and the concentration of Ni2+ at 5×10-11-5×10-8 mol/L, with the detection limit of 8.3×10-12 mol/L. The sensor also had good selectivity, and it was applied in real water samples analysis.
  • 加载中
    1. [1]

      1 Aksuner N, Henden E, Yilmaz I, Cukurovalic A. Sens. Actuators, B: Chem., 2012, 166: 269-274

    2. [2]

      2 Drews W, Weber G, Tölg G. Anal. Chim. Acta, 1990, 231: 265-271

    3. [3]

      3 Aragay G, Pons J, Merkoöi A. Chem Rev., 2011, 111(5): 3433-3458

    4. [4]

      4 Bahadir Z, Ozdes D, Bulut V N, Duran C, Elvan H, Bektes H, Soylak M. Toxicol. Environ. Chem., 2013, 95(5): 737-746

    5. [5]

      5 Scaccia S. Talanta, 1999, 49(2): 467-472

    6. [6]

      6 Batista B L, Rodrigues J L, Nunes J A, Tormen L, Cürtius A J, Jr F B. Talanta, 2008, 76(3): 575-579

    7. [7]

      7 Sahan Y, Basoglu F, Gücer S. Food Chem., 2007, 105(1): 395-399

    8. [8]

      8 Rahmi D, Takasaki Y, Zhu Y, Kobayashi H, Konagaya S, Haraguchi H, Umemura T. Talanta, 2010, 81(4): 1438-1445

    9. [9]

      9 Neodo S, Nie M, Wharton J A, Stokesa K R. Electrochim. Acta, 2013, 88: 718-724

    10. [10]

      10 Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanichd N, Chailapakuld O. Talanta, 2011, 85(2): 870-876

    11. [11]

      11 Segura R, Pradena M, Pinto D, Godoya F, Naglesb E, Arancibia V. Talanta, 2011, 85(5): 2316-2319

    12. [12]

      12 BO Hong-Yan, ZENG Wen-Jing, ZHANG Mi, DU Qing-Lan, GUO Qing-Yu, GAO Qiang. Chinese J. Anal. Chem., 2011, 39 (12): 1893-1897薄红艳, 黄绍峰, 曾文静, 张 宓, 杜青兰, 郭庆羽, 高 强. 分析化学, 2011, 39 (12): 1893-1897

    13. [13]

      13 Kiatkumjorn T, Rattanarata P, Siangprohb W, Chailapakula O, Praphairaksita N. Talanta, 2014, 128: 215-220

    14. [14]

      14 Li X, Li J P, Yin W L, Zhang L M. J. Solid State Electrochem., 2014, 18(7): 1815-1822

    15. [15]

      15 Li J P, Jiang F Y, Wei X P. Anal. Chem., 2010, 82(14): 6074-6078

    16. [16]

      16 Li J P, Ma F, Wei X P, Fu C, Pan H C. Anal. Chim. Acta, 2015, 871: 51-56

    17. [17]

      17 Luo X B, Liu L L, Deng F, Luo S L. J. Mater. Chem. A, 2013, 1: 8280-8286

    18. [18]

      18 Shirzadmehr A, Afkhami A, Madrakian T. J. Mol. Liq., 2015, 204: 227-235

    19. [19]

      19 Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M. Mater. Sci. Eng., C, 2015, 48: 205-212

    20. [20]

      20 Wang G L, Xu J J, Chen H Y. Sci. China. Ser. B: Chem., 2009, 52(11): 1789-1800

    21. [21]

      21 Zhang X R, Guo Y S, Liu M S, Zhang S S. RSC Adv., 2013, 3(9): 2846-2857

    22. [22]

      22 Kang Q, Chen Y F, Li C C, Cai Q Y, Yao S Z, Grimes C A . Chem. Commun., 2011, 47(46): 12509-12511

    23. [23]

      23 Wang P, Ma X Y, Su M Q, Hao Q, Lei J P, Ju H X. Chem. Commun., 2012, 48(82): 10216-10218

    24. [24]

      24 Wang Y H, Zang D J, Ge S G, Ge L, Yu J H, Yan M. Electrochim. Acta, 2013, 107: 147-154

    25. [25]

      25 Han H Y, Sheng Z H, Liang J G. Anal. Chim. Acta, 2007, 596(1): 73-78

    26. [26]

      26 Li R, Jiang Z T, Mao L Y, Shen H X. Anal. Chim. Acta, 1998, 363(2): 295-299

    27. [27]

      27 Ferreira S L C, de Brito C F, Dantas A F, Araújo N M L, Costa A C S. Talanta, 1999, 48(5): 1173-1177

    28. [28]

      28 Betteridge D, Fernando Q, Freiser H. Anal. Chem., 1963, 35(3): 294-298

    29. [29]

      29 Li W L, Sheng P T, Cai J, Feng H Y, Cai Q Y. Biosens. Bioelectron., 2014, 61: 209-214

    30. [30]

      30 Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15(14): 2854-2860

    31. [31]

      31 Wang W J, Hao Q, Wang W, Lei B, Lei J P, Wang Q B, Ju H X. Nanoscale, 2014, 6(5): 2710-2717

    32. [32]

      32 Yan T, Liu H Y, Gao P C, Sun M, Wei Q, Xu W G, Wang X D, Du B. New J. Chem., 2015, 39(5): 3964-3972

    33. [33]

      33 Pang X H, Pan J H, Gao P C, Wang Y Y, Wang L G, Du B, Wei Q. Biosens. Bioelectron., 2015, 74: 49-58

    34. [34]

      34 Lei Y X, Li H, Gao W X, Liu M C, Chen J X, Ding J C, Huang X B, Wu H Y. J. Mater. Chem. C, 2014, 2(35): 7402-7410

    35. [35]

      35 Chandio Z A, Talpur F N, Afridi H I, Khan H, Khaskheli G Q, Khaskheli M I. Anal. Methods, 2013, 5(17): 4425-4429

    36. [36]

      36 Danuta D A, Teresa L, Paweł K. J. Anal. Toxicol., 2015, 39(8): 1-5

    37. [37]

      37 Bahram M, Khezri S, Khezri S. Curr. Chem. Lett., 2013, 2(1): 49-56

    38. [38]

      38 Hurtadoa J, Naglesa E, ArancibiaaV, Rojasa R, Valderramaa M, Fröhlichb R. J. Coord. Chem., 2013, 66(4): 592-601

    39. [39]

      39 Li J P, Zhang L M, Wei G, Zhang Y, Zeng Y. Biosens. Bioelectron., 2015, 69: 316-320

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    13. [13]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(0)
  • Abstract views(524)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return