Citation:
WEI Xiao-Ping, LIANG Shun-Chao, HUANG Wen-Gang, LI Jian-Ping. Study on Molecularly Imprinted Sensor Based on Photocurrent Response for Ni-complex[J]. Chinese Journal of Analytical Chemistry,
;2016, 44(3): 348-354.
doi:
10.11895/j.issn.0253-3820.150918
-
A novel molecularly imprinted sensor for Ni2+ detection was fabricated based on photocurrent method. CdTe quantum dot (QDs) was selected as photoelectric material and modified in ITO electrode, then the nickel-1-(2-pyridylazo)-2-naphthol molecularly imprinted film was formed on the QDs layer by photopolymerization. By using 365 nm ultraviolet light as excitation light, the QDs generated electron-hole, and the electron donor-ascorbic acid combined with electron to form the photocurrent signals. Based on this evidence, Ni2+ was detected according to "gate-effect". The complex was characterized by Fourier transform infrared spectrum and the CdTe QDs was characterized by ultraviolet absorption spectrum and fluorescence emission spectrum, the time for elution and rebinding and the concentration of ascorbic acid in base solution were optimized. The experiment showed that there was a liner relationship between the photocurrent and the concentration of Ni2+ at 5×10-11-5×10-8 mol/L, with the detection limit of 8.3×10-12 mol/L. The sensor also had good selectivity, and it was applied in real water samples analysis.
-
-
-
[1]
1 Aksuner N, Henden E, Yilmaz I, Cukurovalic A. Sens. Actuators, B: Chem., 2012, 166: 269-274
-
[2]
2 Drews W, Weber G, Tölg G. Anal. Chim. Acta, 1990, 231: 265-271
-
[3]
3 Aragay G, Pons J, Merkoöi A. Chem Rev., 2011, 111(5): 3433-3458
-
[4]
4 Bahadir Z, Ozdes D, Bulut V N, Duran C, Elvan H, Bektes H, Soylak M. Toxicol. Environ. Chem., 2013, 95(5): 737-746
-
[5]
5 Scaccia S. Talanta, 1999, 49(2): 467-472
-
[6]
6 Batista B L, Rodrigues J L, Nunes J A, Tormen L, Cürtius A J, Jr F B. Talanta, 2008, 76(3): 575-579
-
[7]
7 Sahan Y, Basoglu F, Gücer S. Food Chem., 2007, 105(1): 395-399
-
[8]
8 Rahmi D, Takasaki Y, Zhu Y, Kobayashi H, Konagaya S, Haraguchi H, Umemura T. Talanta, 2010, 81(4): 1438-1445
-
[9]
9 Neodo S, Nie M, Wharton J A, Stokesa K R. Electrochim. Acta, 2013, 88: 718-724
-
[10]
10 Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanichd N, Chailapakuld O. Talanta, 2011, 85(2): 870-876
-
[11]
11 Segura R, Pradena M, Pinto D, Godoya F, Naglesb E, Arancibia V. Talanta, 2011, 85(5): 2316-2319
-
[12]
12 BO Hong-Yan, ZENG Wen-Jing, ZHANG Mi, DU Qing-Lan, GUO Qing-Yu, GAO Qiang. Chinese J. Anal. Chem., 2011, 39 (12): 1893-1897薄红艳, 黄绍峰, 曾文静, 张 宓, 杜青兰, 郭庆羽, 高 强. 分析化学, 2011, 39 (12): 1893-1897
-
[13]
13 Kiatkumjorn T, Rattanarata P, Siangprohb W, Chailapakula O, Praphairaksita N. Talanta, 2014, 128: 215-220
-
[14]
14 Li X, Li J P, Yin W L, Zhang L M. J. Solid State Electrochem., 2014, 18(7): 1815-1822
-
[15]
15 Li J P, Jiang F Y, Wei X P. Anal. Chem., 2010, 82(14): 6074-6078
-
[16]
16 Li J P, Ma F, Wei X P, Fu C, Pan H C. Anal. Chim. Acta, 2015, 871: 51-56
-
[17]
17 Luo X B, Liu L L, Deng F, Luo S L. J. Mater. Chem. A, 2013, 1: 8280-8286
-
[18]
18 Shirzadmehr A, Afkhami A, Madrakian T. J. Mol. Liq., 2015, 204: 227-235
-
[19]
19 Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M. Mater. Sci. Eng., C, 2015, 48: 205-212
-
[20]
20 Wang G L, Xu J J, Chen H Y. Sci. China. Ser. B: Chem., 2009, 52(11): 1789-1800
-
[21]
21 Zhang X R, Guo Y S, Liu M S, Zhang S S. RSC Adv., 2013, 3(9): 2846-2857
-
[22]
22 Kang Q, Chen Y F, Li C C, Cai Q Y, Yao S Z, Grimes C A . Chem. Commun., 2011, 47(46): 12509-12511
-
[23]
23 Wang P, Ma X Y, Su M Q, Hao Q, Lei J P, Ju H X. Chem. Commun., 2012, 48(82): 10216-10218
-
[24]
24 Wang Y H, Zang D J, Ge S G, Ge L, Yu J H, Yan M. Electrochim. Acta, 2013, 107: 147-154
-
[25]
25 Han H Y, Sheng Z H, Liang J G. Anal. Chim. Acta, 2007, 596(1): 73-78
-
[26]
26 Li R, Jiang Z T, Mao L Y, Shen H X. Anal. Chim. Acta, 1998, 363(2): 295-299
-
[27]
27 Ferreira S L C, de Brito C F, Dantas A F, Araújo N M L, Costa A C S. Talanta, 1999, 48(5): 1173-1177
-
[28]
28 Betteridge D, Fernando Q, Freiser H. Anal. Chem., 1963, 35(3): 294-298
-
[29]
29 Li W L, Sheng P T, Cai J, Feng H Y, Cai Q Y. Biosens. Bioelectron., 2014, 61: 209-214
-
[30]
30 Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15(14): 2854-2860
-
[31]
31 Wang W J, Hao Q, Wang W, Lei B, Lei J P, Wang Q B, Ju H X. Nanoscale, 2014, 6(5): 2710-2717
-
[32]
32 Yan T, Liu H Y, Gao P C, Sun M, Wei Q, Xu W G, Wang X D, Du B. New J. Chem., 2015, 39(5): 3964-3972
-
[33]
33 Pang X H, Pan J H, Gao P C, Wang Y Y, Wang L G, Du B, Wei Q. Biosens. Bioelectron., 2015, 74: 49-58
-
[34]
34 Lei Y X, Li H, Gao W X, Liu M C, Chen J X, Ding J C, Huang X B, Wu H Y. J. Mater. Chem. C, 2014, 2(35): 7402-7410
-
[35]
35 Chandio Z A, Talpur F N, Afridi H I, Khan H, Khaskheli G Q, Khaskheli M I. Anal. Methods, 2013, 5(17): 4425-4429
-
[36]
36 Danuta D A, Teresa L, Paweł K. J. Anal. Toxicol., 2015, 39(8): 1-5
-
[37]
37 Bahram M, Khezri S, Khezri S. Curr. Chem. Lett., 2013, 2(1): 49-56
-
[38]
38 Hurtadoa J, Naglesa E, ArancibiaaV, Rojasa R, Valderramaa M, Fröhlichb R. J. Coord. Chem., 2013, 66(4): 592-601
-
[39]
39 Li J P, Zhang L M, Wei G, Zhang Y, Zeng Y. Biosens. Bioelectron., 2015, 69: 316-320
-
[1]
-
-
-
[1]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[2]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[5]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[6]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[7]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[8]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[9]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[10]
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
-
[13]
Zhiqiang XING , Jinling LIU , Mingmin SU , Lei ZHANG , Lijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181
-
[14]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[15]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[16]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[17]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[18]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[19]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[20]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(524)
- HTML views(37)
Login In
DownLoad: