Citation: GONG Ying-Zhong, GUAN Liang, FENG Xin-Lu, WANG Li-Guang, LIU Han-Cheng, ZHU Li-Ye. Research on Two-channel and Differential Impedance Spectroscopy Measurement Technology and Instrument[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 160-166. doi: 10.11895/j.issn.0253-3820.150546 shu

Research on Two-channel and Differential Impedance Spectroscopy Measurement Technology and Instrument

  • Corresponding author: GUAN Liang, 
  • Received Date: 8 July 2015
    Available Online: 20 August 2015

    Fund Project: 本文系国家自然科学基金青年基金(No.21205136) (No.21205136)重庆市应用基础与前沿研究(一般)项目(No.cstc2014jcyjA0592) (一般)项目(No.cstc2014jcyjA0592)重庆市研究生科研创新项目(No.CYB14101)资助 (No.CYB14101)

  • Dielectric difference analysis is important for impedance spectroscopy, which is the basis of dielectric materials composition, structure and performance characteristics analysis. As for normal single channel impedance spectroscopy measurement technique, substrate signals resulting from sensor substrate and so on will weaken the dielectric difference dramatically. In this work, a new impedance spectroscopic technique has been proposed, which is characterized by two-channel and differential detection methods and based on AD5933 impedance converter chip. In the frequency range of 1-91 kHz, experiments have been performed with the excitation signal differences from 0 mV to 100 mV under the substrate signal of 200, 400 and 1000 mV for new two-channel and differential and normal single channel impedance spectroscopic methods. Seven oil samples including gasoline, diesel fuel, jet fuel and lubricating oils have also been tested by the methods of single channel detection, differential detection with the references of air and jet fuel under the excitation voltage of 18 Vpp. The results showed that the impedance response sensitivity of two-channel and differential detection was 1-2 orders of magnitude of the normal single channel detection and free from the influence of substrate signal. For the oil samples, the impedance response sensitivity of differential detection with reference by jet fuel was 5-10 times of differential detection reference by air and 9-12 times of single channel detection, respectively, which proved that the differential detection could improve impedance detection sensitivity and eliminate the effect of substrate signal significantly.
  • 加载中
    1. [1]

      1 Fuentes A, Vázquez-Gutiérrez J L, Pérez-Gago M B, Vonasek E, Nitin N, Barrett D M. J. Food Eng., 2014,133:16-22

    2. [2]

      2 Scandurra G, Tripodi G, Verzera A. J. Food Eng., 2013,119(4):738-743

    3. [3]

      3 YAN Xiao-Fei, WANG Mao-Hua, AN Dong. Chinese J. Anal. Chem., 2011,39(10):1601-1610 颜小飞, 汪懋华, 安 冬.分析化学,2011,39(10):1601-1610

    4. [4]

      4 SHI Xin, XU Jian-Ping, LI Lin-Lin, WANG Chang, LI Lan. Chinese Journal of Luminescence,2015,36(8):898-905 石 鑫, 徐建萍, 李霖霖, 王 昶, 李 岚.发光学报,2015,36(8):898-905

    5. [5]

      5 WANG Da, WANG Hua-Xiang, CUI Zi-Qiang, GAO Zhen-Tao, CHONG Nan-Nan. Transducer and Microsy. Technol., 2012, 31(12):94-96, 100 王 达, 王化祥, 崔自强, 高振涛, 种楠楠.传感器与微系统,2012, 31(12):94-96, 100

    6. [6]

      6 Margo C, Katrib J, Nadi M, Rouane A. Physiol. Meas., 2013,34(4):391-405

    7. [7]

      7 YAN Xiao-Fei, WANG Mao-Hua, WEN Xin-Hua, AN Dong. Chinese J. Anal. Chem., 2013,41(6):817-821 颜小飞, 汪懋华, 温新华, 安 冬.分析化学,2013,41(6):817-821

    8. [8]

      8 Zhang D M, Jiang J, Chen J Y, Zhang Q, Liu Y L, Yao Y, Li S, Liu G L, Liu Q J. Biosens. Bioelectron., 2015,70:81-88

    9. [9]

      9 Hoja J, Lentka G. Sensor. Actuat. A, 2010,163(1):191-197

    10. [10]

      10 Hamed A, Tisserand E, Schweitzer P, Berviller Y. Sensor. Actuat. A, 2012,182:82-88

    11. [11]

      11 M'Peko J C, Reis D L S, De Souza J E, Caires A R L. Int. J. Hydrogen Energ., 2013,38(22):9355-9359

    12. [12]

      12 Asadauskas S J, Grigucevi[AKč]ienê A, Leinartas K, Bražinskiené D. Tribol. Int., 2011,44(5):557-564

    13. [13]

      13 LI Wen-Qiang, HUANG Gang, YANG Lu. Chinese J. Sci. Instrum., 2014,35(4):859-865 李文强, 黄 刚, 杨 录.仪器仪表学报,2014,35(4):859-865

    14. [14]

      14 Chabowski K, Piasecki T, Dzierka A, Nitsch K. Metrol. Meas. Syst., 2015,22(1):13-24

    15. [15]

      15 Jiang J, Wang X, Chao R, Ren Y K, Hu C P, Xu Z D, Liu G L. Sensor. Actuat. B, 2014,193:653-659

    16. [16]

      16 GUAN Liang, FEN Xin-Lu, XIONG Gang, LIN Guo-Mei, WANG Shuai. Acta Petrolei Sin. (Petrol. Process.), 2008,24(3):350-355 管 亮, 冯新泸, 熊 刚, 林国美, 王 帅.石油学报(石油加工),2008,24(3):350-355

    17. [17]

      17 Schaumburg G. Dielect. Newsl., 1997,8:5-10

    18. [18]

      18 Schaumburg G. Dielect. Newsl., 2006,22:5-7

  • 加载中
    1. [1]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    3. [3]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    6. [6]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    7. [7]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    13. [13]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    14. [14]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    15. [15]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    16. [16]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    17. [17]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(503)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return