Citation: YIN Qin, LUO Huo-Lin, LIU Xing-Xing, HUANG Xue-Yong, LUO Li-Ping. Rapid Evaluation of Seed Vigor of Coffee by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(2): 198-204,272. doi: 10.11895/j.issn.0253-3820.150535 shu

Rapid Evaluation of Seed Vigor of Coffee by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

  • Corresponding author: LUO Li-Ping, 
  • Received Date: 4 July 2015
    Available Online: 27 October 2015

    Fund Project: 本文系"十二五"国家科技支撑计划(No.2012BDA29B01) (No.2012BDA29B01)国家自然科学基金(No.31370384) (No.31370384)江西省科技厅项目(No.20123BCB22004) (No.20123BCB22004)江西省教育厅项目(No.KJLD12051)资助 (No.KJLD12051)

  • To determine the seed vigor of coffee quickly and non-destructively, surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS) was used to obtain chemical fingerprints directly from the surface of the coffee seed, without any sample pretreatment. The mass spectral raw data were analyzed by multivariate analysis, including principal component analysis (PCA), cluster analysis (CA) and discriminant analysis (DA), to differentiate efficaciously the coffee seeds with different vigor. The experimental results demonstrated that in the positive ion mode, DAPCI-MS combined with multivariate analysis could effectively distinguish different seed vigor for coffee seed. Three principal components were extracted by PCA, and their cumulative contribution rate was 92.2%. Coffee seeds with the same vigor was packed closely together in CA analysis, and its accuracy was 100%. In DA analysis, the return discriminant ratio for the training muster was as high as 100%, while the cross validation analysis success rate was 100%. Thus, it was concluded that the coffee seeds with different vigor could be differentiated by DAPCI-MS, and the results provided a basis for establishing a fast, non-destructive and sensitive detection method of seed vigor.
  • 加载中
    1. [1]

      1 LUO Li-Ping, WANG Jiang, ZHANG Wen-Jun, DAI Xi-Mo, FANG Xiao-Wei, ZHANG Xi, LIU Ya-Li, CHEN Huan-Wen. Chinese J. Anal. Chem., 2013, 41(7): 1050-1056 罗丽萍, 王 姜, 章文军, 戴喜末, 方小伟, 张 茜, 刘亚丽, 陈焕文. 分析化学, 2013, 41(7): 1050-1056

    2. [2]

      2 Alberici R M, Simas R C, Sanvido G B, Romão W, Lalli P M, Benassi M,Cunha I B S, Eberlin M N. Anal. Bioanal. Chem., 2010, 398(1): 265-294

    3. [3]

      3 WANG Nan-Nan, WANG Hai-dong, DING Jian-Hua, OUYANG Yong-Zhong, ZHU Xiao-Bin, CHEN Huan-Wen. Chinese J. Anal. Chem., 2014, 42(4): 547-551 王楠楠, 王海东, 丁健桦, 欧阳永中, 朱小兵, 陈焕文. 分析化学, 2014, 42(4): 547-551

    4. [4]

      4 Chen H W, Liang H Z, Ding J H, Lai J H, Huan Y F, Qiao X L. J. Agr. Food Chem., 2007, 55(25): 10093-10100

    5. [5]

      5 Wu Z C, Chen H W, Wang W L, Jia B, Yang T L, Zhao Z F, Ding J H Xiao X X. J. Agr. Food Chem., 2009, 57(20): 9356-9364

    6. [6]

      6 LUO Li-Ping, ZHAO Zhan-Feng, DAI Xi-Mo, ZHANG Xi, LIU Ya-Li, ZHANG Xing-Lei, ZHANG Wen-Jun, OUYANG Yong-Zhong. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 261-266 罗丽萍, 赵占峰, 戴喜末, 张 茜, 刘亚丽, 张兴磊, 章文军, 欧阳永中. 农业工程学报, 2013, 29(7): 261-266

    7. [7]

      7 Patui S, Clincon L, Peresson C, Zancani M, Conte L, Terra L D, Navarini L, Vianello A, Braidot E. Plant Sci., 2014, 219-220: 19-25

    8. [8]

      8 Bytof G, Knopp S E, Kramer D, Breitenstein B, Bergervoet J H W, Groot S P C, Dirk S. Ann. Bot., 2007, 100(1): 61-66

    9. [9]

      9 International Seed Testing Association. The Manual Method of Determination of Seedling and Seed Vigor Evaluation. Beijing, Beijing Agricultural University press, 1993: 101-128 国际种子检验协会(ISTA). 种苗评定与种子活力测定方法手册. 北京: 北京农业大学出版社, 1993: 101-128

    10. [10]

      10 International Seed Testing Association. InternationalSeed Inspection Procedure. Beijing, China Agriculture Press, 1996: 54-57 国际种子检验协会(ISTA). 国际种子检验规程. 北京: 农业出版社, 1996: 54-57

    11. [11]

      11 Rendón M Y, Salva T D G, Bragagnolo N. Food Chem., 2014, 147(2014): 279-286

    12. [12]

      12 Dussert S, Davey M W, Laffargue A, Doulbeau S, Swennen R, Etienne H. Physiol. Plantarum, 2006, 127(2): 192-204

    13. [13]

      13 Toci A T, Farah A. Food Chem., 2008, 108(3): 1133-1141

    14. [14]

      14 Goff S A, Klee H J. Science, 2006, 311(5762): 815-819

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Zhanming Zhang Can Zhu Juan Wang Yanghui Lin Mo Sun . Ideological and Political Cases in the Course of Organic Chemistry Experiment: Taking Caffeine Extraction from Tea Leaves Experiment as an Example. University Chemistry, 2025, 40(7): 34-41. doi: 10.12461/PKU.DXHX202409030

    3. [3]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    4. [4]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    7. [7]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Yunying Wu Zhilan Mo Xue Zhou Yu Yuan Yunfei Ma Jing Chen Gang Tang . Empowering the Digital Transformation of Organic Chemistry Experiments with Sensing Technology: A Case of Atmospheric Distillation, Vacuum Distillation and Fractionation. University Chemistry, 2025, 40(11): 310-317. doi: 10.12461/PKU.DXHX202503078

    9. [9]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    10. [10]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    11. [11]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    15. [15]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    16. [16]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    17. [17]

      Zhentong Zhu Peiyao Du Chaoqin Zeng Rui Zhou Xiaoyan He Bingzhang Lu Xiaoquan Lu . Discussion on Teaching Methods for Bilingual Courses in Instrumental Analysis for Chemistry Majors. University Chemistry, 2025, 40(10): 39-45. doi: 10.12461/PKU.DXHX202411014

    18. [18]

      Shuo Wu Cheng Yang Xiao Dong Huimin Guo Bo Song Baojun Ding Xiuyun Wang Yuzhen Pan . Precise Teaching Based on Analytical Chemistry Artificial Intelligent Course. University Chemistry, 2025, 40(11): 76-82. doi: 10.12461/PKU.DXHX202502090

    19. [19]

      Fang Mi Furong Zhang Zuotao Xu Yushan Liu Ming Guan . Visual Analysis of Dynamic Evolution and Development Trend of Analytical Chemistry Teaching Mode Research. University Chemistry, 2025, 40(9): 318-325. doi: 10.12461/PKU.DXHX202506072

    20. [20]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

Metrics
  • PDF Downloads(0)
  • Abstract views(650)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return