Citation: HUANG Gui-Lan, YUAN Ling, LIU Shi-Lei, ZHOU Shi-Kun. In Situ Phosphitylation for Nuclear Magnetic Resonance Identification of Precursors of Chemical Warfare Agents[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1927-1933. doi: 10.11895/j.issn.0253-3820.150178 shu

In Situ Phosphitylation for Nuclear Magnetic Resonance Identification of Precursors of Chemical Warfare Agents

  • Corresponding author: HUANG Gui-Lan, 
  • Received Date: 5 April 2015
    Available Online: 20 July 2015

  • There is a trouble for 1H NMR identification of non-phosphorus precursors of chemical warfare agents listed in Schedule 2, part B of Chemical Weapons Convention(CWC) in complex matrix. An alternative method was proposed for identification by in situ derivatization of the precursors containing hydroxyl functions with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane(CTMP) in a NMR tube followed by phosphorus-31 NMR detection. The specificity, stability, sensitivity and selectivity of the method were evaluated with pinacol and three aminoalcohols isomers, 2-(N,N-dipropylamino)ethanol, 2-(N-butyl-N-ethylamino)ethanol and 2-(N-isopropyl-N-propylamino) ethanol. The results showed that the phosphorylation products were single, stable and allowing clear distinction between aminoalcohols isomers. The method was used for the detection and identification of three mixed aminoalcohols isomers present(at original concentration of 10μg/mL) in an organic sample from 32th OPCW Official Proficiency Tests.
  • 加载中
    1. [1]

      1 Convention on the Prohibition of the Development, Production,Stockpiling and Use of Chemical Weapons and their Destruction(1997) Technical Secretariat of the Organization for Prohibition of Chemical Weapons. The Hague, The Netherlands. http://www.opcw.org 2 Messilakso M. Chemical Weapons Convention Chemicals Analysis, Sample Collection, Preparation and Analytical Methods. Chichester:John Wiley & Sons Ltd, 2005:322-352

    2. [2]

      3 Work Instruction for the Reporting of the Results of the OPCW Proficiency Tests, QDOC/LAB/WI/PT04(6th August 2012):60-63

    3. [3]

      4 LU De-Pei, XU Zhen-Chun. Chemistry, 1984, 3:1-7 陆德培, 徐震春. 化学通报, 1984, 3:1-7

    4. [4]

      5 Che C, Zhang Z N, Huang G L, Wang X X, Qin Z H. Chinese Chem. Lett., 2004, 15(6):675-678

    5. [5]

      6 Schiff D E, Verkade J G, Metzler R M, Squires T G, Venier C G. Appl. Spectrosc., 1986, 40:348-351

    6. [6]

      7 Argyropoulos D S. Res. Chem. Intermedia., 1995, 21(3-5):373-395

    7. [7]

      8 Spyros A, Dais P. J. Agric. Food Chem., 2000, 48:802-805

    8. [8]

      9 Spyros A, Dais P. Pro. Nucl. Mag. Res. Sp., 2009, 54(3-4):195-207

    9. [9]

      10 Mazumder A, Kumar A, Purohit A K, Dubey D K. Anal. Bioanal. Chem., 2012, 402(4):1643-1652

    10. [10]

      11 Jiang Z H, Argyropoulos D S, Granata A. Magn. Reson. Chem., 1995, 33(5):375-382

    11. [11]

      12 Melone F, Saladino R, Lange H, Crestini C. J. Agric. Food Chem., 2013, 61:9307-9315

    12. [12]

      13 Melone F, Saladino R, Lange H, Crestini C. J. Agric. Food Chem., 2013, 61:9316-9324

    13. [13]

      14 Eibisch M, Riemer T, Fuchs B, Schiller J. J. Agric. Food Chem., 2013, 61:2696-2700

    14. [14]

      15 King A W T, Zoia L, Filpponen I, Olszewska A, Xie H B, Kilpelainen I, Argyropoulos D S. J. Agric. Food Chem., 2009, 57(18):8236-8234

    15. [15]

      16 Zhang A P, Lu F C, Liu C F, Sun R C. J. Agric. Food Chem., 2010, 58(21):11287-11293

    16. [16]

      17 Granata A, Argyropoulos D S. J. Agric. Food Chem., 1995, 43(6):1538-1544

    17. [17]

      18 Fronimaki P, Spyros A, Christophoridou S, Dais P. J. Agric. Food Chem., 2002, 50(8):2207-2213

    18. [18]

      19 Nagy M, Kerr B J, Ziemer C J, Ragauska A J. Fuel, 2009, 88(9):1793-1797

    19. [19]

      20 Nagy M, Foston M, Ragauskas A J. J. PhyS. Chem. A, 2010, 114(11):3883-3887

    20. [20]

      21 David K, Kosa M, Williams A, Mayor R, Realff M, Muzzy J, Ragauskas A. Biofuels, 2010, 1(6):839-845

    21. [21]

      22 Zoia L, Tolppa E L, Pirovano L, Salanti A, Orlandi M. Archaeometry, 2012, 54(6):1076-1099

    22. [22]

      23 Filpponen I, Argyropoulos D S. Ind. Eng. Chem. Res., 2008, 47(22):8906-8910

    23. [23]

      24 Hatzakis E, Dais P. J. Agric. Food Chem., 2008, 56(6):1866-1872

    24. [24]

      25 Work Instruction for the Preparation of Samples for OPCW Proficiency Tests, QDOC/LAB/WI/PT02(6th August 2012) 26 Preliminary Evaluation of the Results:Thirty-Second Official Proficiency Test; Technical Secretariat of the Organization for the Prohibition of Chemical Weapons(January 2013) Vol.Ⅱ.

  • 加载中
    1. [1]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    4. [4]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    13. [13]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    14. [14]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    15. [15]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    16. [16]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    19. [19]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    20. [20]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

Metrics
  • PDF Downloads(0)
  • Abstract views(463)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return