Citation: Peng Dong, Ke Wang, Jun-fang Li, Qiang Fu. Chain Entanglement Regulation of Sintered Ultrahigh Molecular Weight Polyethylene and Its Effect on Properties[J]. Acta Polymerica Sinica, ;2020, 51(1): 117-124. doi: 10.11777/j.issn1000-3304.2020.19159 shu

Chain Entanglement Regulation of Sintered Ultrahigh Molecular Weight Polyethylene and Its Effect on Properties

  • Corresponding author: Qiang Fu, qiangfu@scu.edu.cn
  • Received Date: 29 August 2019
    Revised Date: 16 October 2019

  • Ultrahigh molecular weight polyethylene (UHMWPE) shows outstanding toughness, wear resistance and chemical inertness as a high performance polymer. However, extremely high entanglement degree results in high viscosity and processing difficulties, which greatly limits the applications. To address this issue, the new single-site Z-N catalysts have been used to regulate the growth and cohesion of molecular chains during the polymerization of ethylene in recent years, by which nascent UHMWPE with low entanglement degree and excellent processing capability can be obtained. With such UHMWPE nascent powder, different sintering temperatures (Ts) of 170, 190 and 220 °C were set, respectively, then a isothermal crystallization step with precise temperature control was added, and the effect of chain entanglement on the structures and properties of sintered UHMWPE was investigated. Through the tensile tests at 160 °C, it was confirmed that UHMWPE chains significantly reentangled when Ts = 220 °C, resulting in high degree of entanglement; while the initial low entanglement state can be sufficiently reserved when Ts = 170 °C, Me reached 12.3 kg/mol. Therefore, the samples with distinct different entanglement states can be obtained. DSC results have shown that low entanglement degree was beneficial to the formation of crystal lamellae with higher melting temperature (up to 141 °C) and high crystallinity (up to 65%) through isothermal crystallization steps, which was close to the level of nascent UHMWPE powder. Moreover, it proved that the integrated mechanical performance of the product sintered at 170 °C was significantly improved. The yield strength was increased by up to 72%, the tensile strength by 139%, the elastic modulus by 162%, and the elongation at break by 36%, realizing simultaneously strengthening and toughening of sintered UHMWPE materials. This provides a new strategy for the high performance UHMWPE sintered products from the perspective of chain entanglement regulation.
  • 加载中
    1. [1]

      Zuo J D, Zhu Y M, Liu S M, Jiang Z J, Zhao J Q. Polym Bull, 2007, 58(4): 711 − 722  doi: 10.1007/s00289-006-0711-3

    2. [2]

      Jacobs, Joshua J. J Bone Joint Surg, 2004, 87(8): 1906 − 1906

    3. [3]

      Tian M, Tao Z, Gao P G, Zhang J C. Chinese Sci Bull, 2013, 58(8): 945 − 948  doi: 10.1007/s11434-012-5555-7

    4. [4]

      Liu X, Li M, Li X, Deng X, Zhang X, Yuan Y, Liu Y, Chen X. J Mater Sci, 2018, 53(9): 1 − 15

    5. [5]

      Oonishi H, Kim S C, Kyomoto M, Masuda S, Asano T, Clarke I C. J Biomed Mater Res B, 2010, 74B(2): 754 − 759

    6. [6]

      Ansari F, Gludovatz B, Kozak A, Ritchie R O, Pruitt L A. J Mech Behav of Biomed Mater, 2016, 60: 267 − 279  doi: 10.1016/j.jmbbm.2016.02.014

    7. [7]

      Chen Dongyang(陈东洋), Liu Cheng(刘程), Wang Jinyan(王锦艳), Pan Chunyue(潘春跃), Yu Guiming(喻桂朋), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2018, (5): 559 − 570  doi: 10.11777/j.issn1000-3304.2017.17298

    8. [8]

      Shen L, Peng M, Qiao F, Zhang J. Chinese J Polym Sci, 2008, 26(6): 653 − 657  doi: 10.1142/S0256767908003394

    9. [9]

      Yu Junrong(于俊荣), Luan Xiuna(栾秀娜), Hu Zuming(胡祖明), Liu Zhaofeng(刘兆峰). Acta Polymerica Sinica(高分子学报), 2005, (5): 764 − 768  doi: 10.3321/j.issn:1000-3304.2005.05.024

    10. [10]

      Qing Jianhua(秦建华), Zhang Zhong(张仲), Liu Chunhui(刘春晖), Gan Wenfeng(高文风). Plastics Science and Technology(塑料科技), 2009, 37(5): 56 − 58  doi: 10.3969/j.issn.1005-3360.2009.05.008

    11. [11]

      Huang Y F, Xu J Z, Zhang Z C, Xu L, Li L B, Li J F, Li Z M. Chem Eng J, 2017, 315: 132 − 141  doi: 10.1016/j.cej.2016.12.133

    12. [12]

      Truss R W, Han K S, Wallace J F, Geil P H. Polym Eng Sci, 1980, 20(11): 747 − 755  doi: 10.1002/pen.760201109

    13. [13]

      Rezaei M, Ebrahimi N G, Kontopoulou M. Polym Eng Sci, 2010, 45(5): 678 − 686

    14. [14]

      Hosseinnezhad R, Talebi S, Rezaei M. J Elastom Plast, 2017, 49(7): 609 − 629  doi: 10.1177/0095244316681833

    15. [15]

      Gao P, Cheung M K, Leung T Y. Polymer, 1996, 37(15): 3265 − 3272  doi: 10.1016/0032-3861(96)88472-2

    16. [16]

      Kim Y H, Wool R P. Macromolecules, 1983, 16(7): 1115 − 1120  doi: 10.1021/ma00241a013

    17. [17]

      Halldin G W, Kamel I A L. Polym Eng Sci, 2010, 17(1): 21 − 26

    18. [18]

      Deplancke T, Lame O, Rousset F, Aguili I, Seguela R, Vigier G. Macromolecules, 2013, 47(1): 197 − 207

    19. [19]

      Deplancke T, Lame O, Rousset F, Seguela R, Vigier G. Macromolecules, 2015, 48(15): 5328 − 5338  doi: 10.1021/acs.macromol.5b00618

    20. [20]

      Kennedy M A, Peacock A J, Mandelkern L. Macromolecules, 1994, 27(19): 5297 − 5310  doi: 10.1021/ma00097a009

    21. [21]

      Pang Y, Xia D, Zhang X, Liu K, Chen E, Han C C, Wang D. Polymer, 2008, 49(10): 2568 − 2577  doi: 10.1016/j.polymer.2008.03.050

    22. [22]

      Parasnis N, Ramani K. J Mater Sci-Mater M, 1998, 9(3): 165 − 172  doi: 10.1023/A:1008871720389

    23. [23]

      Brooks N W, Ghazali M, Duckett R A, Unwin A P, Ward I M. Polymer, 1998, 40(4): 821 − 825

    24. [24]

      Humbert S, Lame O, Vigier G. Polymer, 2009, 50(15): 3755 − 3761  doi: 10.1016/j.polymer.2009.05.017

    25. [25]

      Rastogi S, Spoelstra A B, Goossens J G P, Lemstra P J. Macromolecules, 1999, 30(25): 7880 − 7889

    26. [26]

      Wang Yiren(王一任), Fan Zhongyong(范仲勇), Yu Ying(于瀛), Bu Haishan(卜海山). Journal of Fudan University (Natural Science)(复旦学报: 自然科学版), 2002, 41(4): 365 − 369

    27. [27]

      Liu Tianyu(刘天宇), Jiang Weijiao(蒋维娇), Yang Weixing(杨卫星), Zhang Qin(张琴), Fu Qiang(傅强). Acta Polymerica Sinica(高分子学报), 2018, (8): 1107 − 1115  doi: 10.11777/j.issn1000-3304.2018.18053

    28. [28]

      Jin Y L, Liu L, Wang Y J, Liu Z, Liu B P. Chinese J Polym Sci, 2019, 37: 995 − 1004  doi: 10.1007/s10118-019-2295-z

    29. [29]

      Pandey A, Champouret Y, Rastogi S. Macromolecules, 2011, 44(12): 4952 − 4960  doi: 10.1021/ma2003689

    30. [30]

      Tuskaev V A, Gagieva S C, Kurmaev D A, Vasil’ev V G, Kolosov N A, Zubkevich S V, Mikhaylik E S, Golubev E K, Nikiforova G G, Zhizhko P A. Chinese J Polym Sci, 2018, 37(5): 471 − 477

    31. [31]

      Liu K, de Boer E L, Yao Y, Romano D, Ronca S, Rastogi S. Macromolecules, 2016, 49(19): 7497 − 7509  doi: 10.1021/acs.macromol.6b01173

    32. [32]

      Rastogi S, Lippits D R, Peters G W, Graf R, Yao Y, Spiess H W. Nat Mater, 2005, 4(8): 635 − 641  doi: 10.1038/nmat1437

    33. [33]

      Sun Xiuli(孙秀丽), Tang Yong(唐勇). Acta Polymerica Sinica(高分子学报), 2017, (7): 1019 − 1037  doi: 10.11777/j.issn1000-3304.2017.17033

    34. [34]

      Deplancke T, Lame O, Barrau S, Ravi K, Dalmas F. Polymer, 2017, 111: 204 − 213

    35. [35]

      Bellehumeur C T, Bisaria M K, Vlachopoulos J. Polym Eng Sci, 1996, 36(17): 2198 − 2207  doi: 10.1002/pen.10617

    36. [36]

      Wunderlich B, Cormier C. J Polym Sci, Part B: Polym Phys, 1967, 5(5): 987 − 988  doi: 10.1002/pol.1967.160050514

    37. [37]

      Xue Y Q, Tervoort T A, Lemstra P J. Macromolecules, 1998, 31(9): 3075 − 3080  doi: 10.1021/ma970544u

    38. [38]

      Treloar L R G, Montgomery D J. The Physics of Rubber Elasticity. Oxford: Clarendon Press, 1958. 80 − 99

    39. [39]

      de Gennes P G. C R Acad Sci Ser IIb-Mec Phys Chim Astron, 1995, 321: 363 − 365

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    3. [3]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    4. [4]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    5. [5]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    6. [6]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    9. [9]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    10. [10]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    14. [14]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    20. [20]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

Metrics
  • PDF Downloads(0)
  • Abstract views(4996)
  • HTML views(742)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return