Citation: Shao-fei Wang, Yuan Yu, Qing-yun Wu. High-performance Thin Film Composite forward Osmosis Membrane with Polydopamine/Polyethyleneimine (PDA/PEI) Co-deposition Interlayer[J]. Acta Polymerica Sinica, ;2020, 51(4): 385-392. doi: 10.11777/j.issn1000-3304.2019.19193 shu

High-performance Thin Film Composite forward Osmosis Membrane with Polydopamine/Polyethyleneimine (PDA/PEI) Co-deposition Interlayer

  • Corresponding author: Qing-yun Wu, wuqingyun@nbu.edu.cn
  • Received Date: 14 November 2019
    Revised Date: 9 December 2019
    Available Online: 6 January 2020

Figures(8)

  • Forward osmosis (FO), as a promising membrane separation technology, has attracted much attention, whose performance is strongly dependent on the structure and property of FO membrane. Thin film composite (TFC) FO membrane, consisting of a thin film and a porous substrate, is commonly used for FO process due to its high water permeability. Nevertheless, TFC FO membrane still suffers from a trade-off between water permeability and salt rejection, which limits the further application of FO process. Recently, constructing an interlayer between the thin film and the porous substrate has been reported as an effective way to improve the performance of TFC membranes. Herein, a novel TFC FO membrane was prepared by using a polydopamine/polyethyleneimine (PDA/PEI) co-deposition interlayer on cellulose triacetate (CTA) porous substrate followed by an interfacial polymerization. The surface structures and properties of CTA substrates and TFC membranes were systematically investigated by FTIR/ATR spectroscopy, scanning electron microscopy, atom electron microscopy, solute rejection method, and water contact angle test. Compared with CTA substrate and PDA modified CTA substrate, the surface of CTA substrate deposited by PDA/PEI interlayer becomes smooth and has a narrow surface pore size distribution as well as small surface pore size of (30.0 ± 4.1) nm. Meanwhile, the polyamide film formed on the PDA/PEI co-deposition interlayer presents a uniform leaf-like structure and excellent hydrophilicity. Therefore, TFC FO membrane with PDA/PEI co-deposition interlayer achieves an improved water flux of (7.1 ± 2.3) L/(m2·h), rising by 57.6% compared with nascent TFC FO membrane; a low reverse salt flux of (1.4 ± 0.1) g/(m2·h), and a small specific salt flux of (0.2 ± 0.06) g/L, decreasing by 83.9% and 90.6%, respectively. It means that PDA/PEI co-deposition interlayer facilitates to improve both water permeability and selectivity of TFC FO membrane. This work proposes an effective modification method for improving the performance of TFC FO membrane by using PDA/PEI co-deposition interlayer.
  • 加载中
    1. [1]

      Qi S R, Li Y, Wang R, Tang C Y Y. J Membr Sci, 2016, 498: 67 − 74  doi: 10.1016/j.memsci.2015.10.003

    2. [2]

      Pan Y H, Zhao Q Y, Gu L, Wu Q Y. Desalination, 2017, 421: 160 − 168  doi: 10.1016/j.desal.2017.04.019

    3. [3]

      Shi S J, Pan Y H, Wang S F, Dai Z W, Gu L, Wu Q Y. Polymers, 2019, 11: 879  doi: 10.3390/polym11050879

    4. [4]

      Zhao X Z, Li J, Liu C K. Desalination, 2017, 413: 176 − 183  doi: 10.1016/j.desal.2017.03.021

    5. [5]

      Ong R C, Chung T S, de Wit J S, Helmer B J. J Membr Sci, 2015, 473: 63 − 71  doi: 10.1016/j.memsci.2014.08.046

    6. [6]

      Wu Qingyun(吴青芸), Pan Yehan(潘叶寒), Jin Weizhong(金伟中), Xu Jiamin(徐佳敏), Lao Kankan(劳侃侃), Gu Lin(顾林). Acta Polymerica Sinica(高分子学报), 2017, (5): 851 − 857  doi: 10.11777/j.issn1000-3304.2017.16267

    7. [7]

      Wu M B, Lv Y, Yang H C, Liu L F, Zhang X, Xu Z K. J Membr Sci, 2016, 515: 238 − 244  doi: 10.1016/j.memsci.2016.05.056

    8. [8]

      Guo C, Li N, Qian X, Shi J, Jing M, Teng K, Xu Z. Sep Purif Technol, 2020, 230: 115567  doi: 10.1016/j.seppur.2019.05.009

    9. [9]

      Wang X, Yeh T M, Wang Z, Yang R, Wang R, Ma H, Hsiao B S, Chu B. Polymer, 2014, 55(6): 1358 − 1366  doi: 10.1016/j.polymer.2013.12.007

    10. [10]

      Soyekwo F, Zhang Q, Gao R, Qu Y, Lin C, Huang X, Zhu A, Liu Q. J Membr Sci, 2017, 524: 174 − 185  doi: 10.1016/j.memsci.2016.11.019

    11. [11]

      Wang J J, Yang H C, Wu M B, Zhang X, Xu Z K. J Mater Chem A, 2017, 5(31): 16289 − 16295  doi: 10.1039/C7TA00501F

    12. [12]

      Shah A A, Cho Y H, Choi H G, Nam S E, Kim J F, Kim Y, Park Y I, Park H. J Ind Eng Chem, 2019, 73: 276 − 285  doi: 10.1016/j.jiec.2019.01.039

    13. [13]

      Liu X W, Cao Y, Li Y X, Xu Z L, Li Z, Wang M, Ma X H. J Membr Sci, 2019, 576: 26 − 35  doi: 10.1016/j.memsci.2019.01.023

    14. [14]

      Wu M, Yuan J, Wu H, Su Y, Yang H, You X, Zhang R, He X, Khan N A, Kasher R, Jiang Z. J Membr Sci, 2019, 576: 131 − 141  doi: 10.1016/j.memsci.2019.01.040

    15. [15]

      Zhou Z, Hu Y, Boo C, Liu Z, Li J, Deng L, An X. Environ Sci Technol Let, 2018, 5(5): 243 − 248  doi: 10.1021/acs.estlett.8b00169

    16. [16]

      Yang X, Du Y, Zhang X, He A, Xu Z K. Langmuir, 2017, 33(9): 2318 − 2324  doi: 10.1021/acs.langmuir.6b04465

    17. [17]

      Zhang X, Lv Y, Yang H C, Du Y, Xu Z K. ACS Appl Mater Interfaces, 2016, 8(47): 32512 − 32519  doi: 10.1021/acsami.6b10693

    18. [18]

      Gong G, Wang P, Zhou Z, Hu Y. ACS Appl Mater Interfaces, 2019, 11(7): 7349 − 7356  doi: 10.1021/acsami.8b18719

    19. [19]

      Shen K, Cheng C, Zhang T, Wang X. J Membr Sci, 2019, 588: 117192  doi: 10.1016/j.memsci.2019.117192

    20. [20]

      Wang Y, Li X, Zhao S, Fang Z, Ng D, Xie C, Wang H, Xie Z. Ind Eng Chem Res, 2019, 58(1): 195 − 206  doi: 10.1021/acs.iecr.8b04968

    21. [21]

      Choi H G, Shah A A, Nam S E, Park Y I, Park H. Desalination, 2019, 449: 41 − 49  doi: 10.1016/j.desal.2018.10.012

    22. [22]

      Jiang J, Zhu L, Zhu L, Zhu B, Xu Y. Langmuir: ACS J Surf Colloild, 2011, 27(23): 14180 − 14187  doi: 10.1021/la202877k

    23. [23]

      An Yunpeng(安云鹏), Zhang Xinning(张歆宁), Yang Haocheng(杨皓程), Yang Xi(杨熙), Xu Zhikang(徐志康). Acta Polymerica Sinica(高分子学报), 2017, (7): 1105 − 1112  doi: 10.11777/j.issn1000-3304.2017.16344

    24. [24]

      Zhao Mengxue(赵梦雪), Kong Miqiu(孔米秋), Liu Chengjun(刘成俊), Huang Yajiang(黄亚江), Li Guangxian(李光宪). Acta Polymerica Sinica(高分子学报), 2018, (6): 721 − 732  doi: 10.11777/j.issn1000-3304.2017.17203

    25. [25]

      Tang Anqi(唐安琪), Lu Jingyu(路景驭), Feng Weilin(冯炜林), Zhang Peibin(张培斌), Zhu Liping(朱利平). Acta Polymerica Sinica(高分子学报), 2018, (12): 1524 − 1531  doi: 10.11777/j.issn1000-3304.2018.18109

    26. [26]

      Shi H, Xue L, Gao A, Fu Y, Zhou Q, Zhu L. J Membr Sci, 2016, 498: 39 − 47  doi: 10.1016/j.memsci.2015.09.065

    27. [27]

      Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C. J Membr Sci, 2016, 506: 60 − 70  doi: 10.1016/j.memsci.2016.01.053

    28. [28]

      Chen Mingyi(陈铭忆), Zhang Yang(张扬), Wen Bianyin(温变英). Acta Polymerica Sinica(高分子学报), 2013, (10): 1319 − 1324

    29. [29]

      Wei H L, Ren J, Han B, Xu L, Han L L, Jia L Y. Colloid Surf B-Biointerfaces, 2013, 110: 22 − 28  doi: 10.1016/j.colsurfb.2013.04.008

    30. [30]

      Jiang J H, Zhu L P, Zhu L J, Zhang H T, Zhu B K, Xu Y Y. ACS Appl Mater Interfaces, 2013, 5(24): 12895 − 12904  doi: 10.1021/am403405c

    31. [31]

      Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. J Membr Sci, 2015, 476: 50 − 58  doi: 10.1016/j.memsci.2014.11.024

    32. [32]

      Yang H C, Wu M B, Li Y J, Chen Y F, Wan L S, Xu Z K. J Appl Polym Sci, 2016, 133(32): 43792

    33. [33]

      Singh S, Khulbe K C, Matsuura T, Ramamurthy P. J Membr Sci, 1998, 142(1): 111 − 127  doi: 10.1016/S0376-7388(97)00329-3

    34. [34]

      Youm K H, Kim W S. J Chem Eng Japan, 1991, 24(1): 1 − 7  doi: 10.1252/jcej.24.1

    35. [35]

      Zhou Q L, Yang P L, Xiao X, Jia L. J Sep Sci, 2013, 36(9-10): 1516 − 1523  doi: 10.1002/jssc.201201163

    36. [36]

      Du Y, Qiu W Z, Lv Y, Wu J, Xu Z K. ACS Appl Mater Interfaces, 2016, 8(43): 29696 − 29704  doi: 10.1021/acsami.6b10367

    37. [37]

      Wang J, Xu R, Yang F, Kang J, Gao Y, Xiang M. J Membr Sci, 2018, 556: 374 − 383  doi: 10.1016/j.memsci.2018.04.011

    38. [38]

      Kong X, Zhou M Y, Lin C E, Wang J, Zhao B, Wei X Z, Zhu B K. J Membr Sci, 2016, 505: 231 − 240  doi: 10.1016/j.memsci.2016.01.028

    39. [39]

      Zargar M, Hartanto Y, Jin B, Dai S. J Membr Sci, 2017, 541: 19 − 28  doi: 10.1016/j.memsci.2017.06.085

  • 加载中
    1. [1]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    7. [7]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    17. [17]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(100)
  • Abstract views(9869)
  • HTML views(2136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return