Citation: Jia-hao Xia, Hong-bin Li, Hua-ping Xu. Measuring the Strength of S/Se Based Dynamic Covalent Bonds[J]. Acta Polymerica Sinica, ;2020, 51(2): 205-213. doi: 10.11777/j.issn1000-3304.2019.19166 shu

Measuring the Strength of S/Se Based Dynamic Covalent Bonds

  • Sulfur, selenium-containing bonds, including disufide bond (SS), diselenide bond (SeSe), and selenide-sulfide bond (SeS), are an important type of light responsive dynamic covalent bonds. Among them, SS and SeS bonds can undergo exchange reaction with the irridiation of UV light, while SeSe bond only requires visible light due to its weaker bond energy. The purpose of this research is to use atomic force microscope-based single molecule force spectroscopy (AFM-SMFS) measurement to reveal the reasons behind the responsiveness and stability of S/Se related dynamic covalent bonds. In this study, quartz substrates modified by SS or SeSe bond were prepared via surface modification. Specifically, the quartz substrates were first washed with a mixture of sulfuric acid and hydrogen peroxide (volume ratio is 7:3), and then processed with oxygen plasma to obtain a hydrophilic surface. The surface then reacted with 3-aminopropyltriethoxysilane to form amino groups at the top, which further reacted with disulfide or diselenide containing diacid to afford SS or SeSe bond-modified substrates. The structures of the surfaces were comfirmed by water contact angle (WCA), atomic force microscopy, X-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry. Based on the light induced exchange reaction, wettabilities of the substrates were able to adjusted and were characterized by WCA and XPS. By exchanging with thiol or diselenide containing polymer, the polymer chain-attached substrates linked by a single bond of either SS, SeS, or SeSe could be obtained. The rupture forces of the three bonds were measured by SMFS. At a pulling speed of 200 nm/s, the rupture forces of SeSe, SeS and SS bonds were (1100 ± 300), (1320 ± 330), and (1450 ± 300) pN, respectively, indicating their strengths decreased as SS > SeS > SeSe. This result was consistent with the thermodynamic stability ranking of the three bonds. SMFS results illustrated that the strength of the dynamic covalent bond is between that of non-covalent interaction and that of robust covalent bond (e.g. C―C bond), which accounts for its balance of responsiveness and stability.
  • 加载中
    1. [1]

      Lehn J M. Chem Eur J, 1999, 5(9): 2455 − 2463  doi: 10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H

    2. [2]

      Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M, Otto S. Chem Rev, 2006, 106(9): 3652 − 3711  doi: 10.1021/cr020452p

    3. [3]

      Rowan S J, Cantrill S J, Cousins G R L, Sanders J K M, Stoddart J F. Angew Chem Int Ed, 2002, 41(6): 898 − 952  doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E

    4. [4]

      Von Delius M, Geertsema E M, Leigh D A. Nat Chem, 2010, 2(2): 96 − 101  doi: 10.1038/nchem.481

    5. [5]

      Imato K, Ohishi T, Nishihara M, Takahara A, Otsuka H. J Am Chem Soc, 2014, 136(33): 11839 − 11845  doi: 10.1021/ja5065075

    6. [6]

      Jin Y, Wang Q, Taynton P, Zhang W. Acc Chem Res, 2014, 47(5): 1575 − 1586  doi: 10.1021/ar500037v

    7. [7]

      Zheng Ning(郑宁), Xie Tao(谢涛). Acta Polymerica Sinica(高分子学报), 2017, (11): 1715 − 1724  doi: 10.11777/j.issn1000-3304.2017.17161

    8. [8]

      Liu Jia(刘佳), Ma Xiaoning(马晓宁), Lang Meidong(郎美东). Acta Polymerica Sinica(高分子学报), 2018, (12): 1514 − 1523  doi: 10.11777/j.issn1000-3304.2018.18133

    9. [9]

      Lin Mingchang(林铭昌), Chen Guosong(陈国颂). Acta Polymerica Sinica(高分子学报), 2017, (7): 1113 − 1120  doi: 10.11777/j.issn1000-3304.2017.16347

    10. [10]

      Otto S, Furlan R L E, Sanders J K M. J Am Chem Soc, 2000, 122(48): 12063 − 12064  doi: 10.1021/ja005507o

    11. [11]

      Belenguer A M, Friscic T, Day G M, Sanders J K M. Chem Sci, 2011, 2(4): 696 − 700  doi: 10.1039/c0sc00533a

    12. [12]

      Zheng Y, Zhai L, Zhao Y, Wu C. J Am Chem Soc, 2015, 137(48): 15094 − 15097  doi: 10.1021/jacs.5b10779

    13. [13]

      Carmine A, Domoto Y, Sakai N, Matile S. Chem Eur J, 2013, 19(35): 11558 − 11563  doi: 10.1002/chem.201301567

    14. [14]

      Park I, Sheiko S S, Nese A, Matyjaszewski K. Macromolecules, 2009, 42(6): 1805 − 1807  doi: 10.1021/ma8026996

    15. [15]

      Dou Xueyu(窦雪宇), Wang Xing(王星), Wu Decheng(吴德成). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 429 − 441  doi: 10.11777/j.issn1000-3304.2019.18263

    16. [16]

      Kildahl N K. J Chem Educ, 1995, 72(5): 423 − 424  doi: 10.1021/ed072p423

    17. [17]

      Ji S B, Cao W, Yu Y, Xu H P. Angew Chem Int Ed, 2014, 53(26): 6781 − 6785  doi: 10.1002/anie.201403442

    18. [18]

      Fan F Q, Ji S B, Sun C X, Liu C, Yu Y, Fu Y, Xu H P. Angew Chem Int Ed, 2018, 57(50): 16426 − 16430  doi: 10.1002/anie.201810297

    19. [19]

      Ji S B, Xia J H, Xu H P. ACS Macro Lett, 2016, 5(1): 9 − 13

    20. [20]

      Ji S B, El Mard H, Smet M, Dehaen W, Xu H P. Sci China Chem, 2017, 60(9): 1191 − 1196  doi: 10.1007/s11426-017-9059-4

    21. [21]

      Xia J H, Li T Y, Lu C J, Xu H P. Macromolecules, 2018, 51(19): 7435 − 7455  doi: 10.1021/acs.macromol.8b01597

    22. [22]

      Ji S B, Cao W, Yu Y, Xu H P. Adv Mater, 2015, 27(47): 7740 − 7745  doi: 10.1002/adma.201503661

    23. [23]

      Ji S B, Fan F Q, Sun C X, Yu Y, Xu H P. ACS Appl Mater Interfaces, 2017, 9(38): 33169 − 33175  doi: 10.1021/acsami.7b11188

    24. [24]

      Xia J H, Li F, Ji S B, Xu H P. ACS Appl Mater Interfaces, 2017, 9(25): 21413 − 21421  doi: 10.1021/acsami.7b05951

    25. [25]

      Xia J H, Ji S B, Xu H P. Polym Chem, 2016, 7(44): 6708 − 6713  doi: 10.1039/C6PY01610C

    26. [26]

      Xia J H, Zhao P, Zheng K, Lu C J, Yin S C, Xu H P. Angew Chem Int Ed, 2019, 58(2): 542 − 546  doi: 10.1002/anie.201810588

    27. [27]

      Zhang Yiheng(张义恒), Wang Zhiqiang(王治强), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2009, (10): 973 − 979  doi: 10.3321/j.issn:1000-3304.2009.10.001

    28. [28]

      Zhang X, Liu C J, Wang Z. Polymer, 2008, 49(16): 3353 − 3361  doi: 10.1016/j.polymer.2008.04.056

    29. [29]

      Cao Y, Yoo T, Li H B. Proc Natl Acad Sci USA, 2008, 105(32): 11152 − 11157  doi: 10.1073/pnas.0803446105

    30. [30]

      Li H B, Cao Y. Acc Chem Res, 2010, 43(10): 1331 − 1341  doi: 10.1021/ar100057a

    31. [31]

      Li J Y, Li H B. J Phys Chem B, 2018, 122(40): 9340 − 9349  doi: 10.1021/acs.jpcb.8b07614

    32. [32]

      Huang W M, Wu X, Gao X, Yu Y F, Lei H, Zhu Z S, Shi Y, Chen Y L, Qin M, Wang W, Cao Y. Nat Chem, 2019, 11(4): 310 − 319  doi: 10.1038/s41557-018-0209-2

    33. [33]

      Cai W H, Xu D, Qian L, Wei J, Xiao C, Qian L, Lu Z Y, Cui S X. J Am Chem Soc, 2019, 141(24): 9500 − 9503  doi: 10.1021/jacs.9b03490

    34. [34]

      Wei Junhao(危军浩), Cai Wanhao(蔡皖豪), Cui Shuxun(崔树勋). Acta Chimica Sinica(化学学报), 2019, 77(2): 189 − 194

    35. [35]

      Zhang S, Qian H J, Liu Z H, Ju H Y, Lu Z Y, Zhang H M, Chi L F, Cui S X. Angew Chem Int Ed, 2019, 58(6): 1659 − 1663  doi: 10.1002/anie.201811152

    36. [36]

      Xue Yurui(薛玉瑞), Zhang Wenke(张文科). Acta Chimica Sinica(化学学报), 2014, 72(4): 481 − 486

    37. [37]

      Xue Y R, Li X, Li H B, Zhang W K. Nat Commun, 2014, 5: 4348  doi: 10.1038/ncomms5348

    38. [38]

      Zhang Y H, Liu C J, Shi W Q, Wang Z Q, Dai L M, Zhang X. Langmuir, 2007, 23(15): 7911 − 7915  doi: 10.1021/la700876d

    39. [39]

      Xiang W T, Li Z D, Xu C Q, Li J, Zhang W K, Xu H P. Chem Asian J, 2019, 14(9): 1481 − 1486  doi: 10.1002/asia.201900332

    40. [40]

      Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E. Science, 1999, 283(5408): 1727 − 1730  doi: 10.1126/science.283.5408.1727

    41. [41]

      Beyer M K, Clausen-Schaumann H. Chem Rev, 2005, 105(8): 2921 − 2948  doi: 10.1021/cr030697h

    42. [42]

      Huang W M, Zhu Z, Wen J, Wang X, Qin M, Cao Y, Ma H B, Wang W. ACS Nano, 2017, 11(1): 194 − 203  doi: 10.1021/acsnano.6b07119

    43. [43]

      Wiita A P, Ainavarapu R K, Huang H H, Fernandez J M. Proc Natl Acad Sci USA, 2006, 103(19): 7222 − 7227  doi: 10.1073/pnas.0511035103

    44. [44]

      Wiita A P, Perez-Jimenez R, Walther K A, Graeter F, Berne B J, Holmgren A, Sanchez-Ruiz J M, Fernandez J M. Nature, 2007, 450(7166): 124 − 127  doi: 10.1038/nature06231

    45. [45]

      Garcia-Manyes S, Liang J, Szoszkiewicz R, Kuo T L, Fernandez J M. Nat Chem, 2009, 1(3): 236 − 242  doi: 10.1038/nchem.207

    46. [46]

      Dopieralski P, Ribas-Arino J, Anjukandi P, Krupicka M, Marx D. Nat Chem, 2017, 9(2): 164 − 170  doi: 10.1038/nchem.2632

  • 加载中
    1. [1]

      Changjie Yin Boyu Wang Dantong Qiao Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046

    2. [2]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    5. [5]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    6. [6]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    7. [7]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    8. [8]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Haozhe Hu Haoyu Zhang Changsheng Lu . Study on the Precipitation Process of Elemental Sulfur from the Decomposition Products of Thiosulfuric Acid: Is It an Unexpected Failed Experiment?. University Chemistry, 2025, 40(11): 409-415. doi: 10.12461/PKU.DXHX202412034

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    12. [12]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    13. [13]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    19. [19]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

Metrics
  • PDF Downloads(0)
  • Abstract views(603)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return