Citation: Jia-bin Zhang, Jia-liang Xu, Bao Zhang, Ya-qing Feng. Graphyne and Modified Graphyne in the Fields of Photoelectrocatalysis and Photovoltaics[J]. Acta Polymerica Sinica, ;2019, 50(12): 1239-1252. doi: 10.11777/j.issn1000-3304.2019.19153 shu

Graphyne and Modified Graphyne in the Fields of Photoelectrocatalysis and Photovoltaics

  • Different from other members in the carbon material family, graphyne, first synthesized in 2010, has sp hybridized carbons and a natural band gap. According to many studies on optoelectronic devices, the recombination of electrons and holes is an important issue, and the excellent photoelectric properties of graphyne such as high carrier mobility and π-conjugated structure can make it an important candidate material in the fields of photocatalysis, electrocatalysis, batteries, etc. However, there are still problems remaining for the direct application of unmodified graphyne owing to its inert surface and fixed band gap. The high activity of acetylenic bond units in the graphyne provides a good platform for chemical modification and doping. Therefore, the energy band structure and semiconductor performance of graphyne can be regulated by simple solution mixing, hydrothermal reaction, and redox method to achieve material hybridization or hetero atom doping, so that the graphyne will fulfill the requirements of photoelectric devices for a semiconductor material. Many studies have been concentrated on this topic, and numerous achievements have been made over the years. In this review article, the properties and synthesis methods of graphdiyne are firstly introduced, followed by a systematic summary about the mechanism of different atomic doping changes which could help in design of precursor molecules and subsequent synthesis of graphyne derivatives. The promotion effect of graphyne hybridization on charge transfer and its specific mechanism are then detailedly illustrated. The latest research progresses of graphyne and graphyne derivatives in practical applications including photoelectrocatalysis, dye sensitized solar cell, and perovskite solar cell are further discussed, while some problems existing in the current research of this field are also listed. Our review concludes with the proposal that research focuses in the future should be shifted from theoretical calculation to specific experiment and the mechanism in the process requires better understanding, so as to push forward the studies on graphyne and further improve material properties.
  • 加载中
    1. [1]

      Coleman J N, Lotya M, O'neill A. Science, 2011, 331(6017): 568 − 571  doi: 10.1126/science.1194975

    2. [2]

      Geim A K, Grigorieva I V. Nature, 2013, 499(7459): 419 − 425  doi: 10.1038/nature12385

    3. [3]

      Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340(6139): 1226419 − 1226436  doi: 10.1126/science.1226419

    4. [4]

      Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat Nanotechnol, 2011, 6(3): 147 − 150  doi: 10.1038/nnano.2010.279

    5. [5]

      Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat Nanotechnol, 2012, 7(11): 699 − 712  doi: 10.1038/nnano.2012.193

    6. [6]

      Haley M M, Brand S C, Pak J J. Angew Chem Int Ed, 1997, 36(8): 836 − 838  doi: 10.1002/anie.199708361

    7. [7]

      Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem Commun, 2010, 46(19): 3256 − 3258  doi: 10.1039/b922733d

    8. [8]

      Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J Am Chem Soc, 2017, 139(8): 3145 − 3152  doi: 10.1021/jacs.6b12776

    9. [9]

      Jin Z, Zhou Q, Chen Y, Mao P, Li H, Liu H, Wang J, Li Y. Adv Mater, 2016, 28(19): 3697 − 3702  doi: 10.1002/adma.201600354

    10. [10]

      Du H, Yang H, Huang C, He J, Liu H, Li Y. Nano Energy, 2016, 22: 615 − 622  doi: 10.1016/j.nanoen.2016.02.052

    11. [11]

      Xue Y, Guo Y, Yi Y, Li Y, Liu H, Li D, Yang W, Li Y. Nano Energy, 2016, 30: 858 − 866  doi: 10.1016/j.nanoen.2016.09.005

    12. [12]

      Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Nano Lett, 2015, 15(4): 2756 − 2762  doi: 10.1021/acs.nanolett.5b00787

    13. [13]

      Zhao Y S, Tang H J, Yang N L, Wang D. Adv Sci, 2018, 5(12): 1800959 − 1800976  doi: 10.1002/advs.201800959

    14. [14]

      Enyashin A N, Ivanovskii A L. Phys Status, 2011, 248(8): 1879 − 1883  doi: 10.1002/pssb.201046583

    15. [15]

      Zhou J, Li J, Liu Z, Zhang J. Adv Mater, 2019, 1803758 − 1803773  doi: 10.1002/adma.201803758

    16. [16]

      Zhou J Y, Zhang J, Liu Z F. Acta Phys-Chim Sin, 2018, 34(9): 977 − 991

    17. [17]

      Qiao J S, Kong X H, Hu Z X, Yang F, Ji W. Nat Commun, 2014, 5: 1 − 7

    18. [18]

      Du R, Zhang N, Xu H, Mao N N, Duan W J, Wang J Y, Zhao Q C, Liu Z F, Zhang J. Adv Mater, 2014, 26(47): 8053 − 8058  doi: 10.1002/adma.201403058

    19. [19]

      Parvin N, Jin Q, Wei Y Z, Yu R B, Zheng B, Huang L, Zhang Y, Wang L H, Zhang H, Gao M Y, Zhao H J, Hu W P, Li Y L, Wang D. Adv Mater, 2017, 29(18): 1606755 − 1606761  doi: 10.1002/adma.201606755

    20. [20]

      Liu R, Gao X, Zhou J Y, Xu H, Li Z Z, Zhang S Q, Xie Z Q, Zhang J, Liu Z F. Adv Mater, 2017, 29(18): 1604665 − 1604671  doi: 10.1002/adma.201604665

    21. [21]

      Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science, 2011, 332(6026): 228 − 231  doi: 10.1126/science.1202747

    22. [22]

      Gao X, Zhu Y H, Yi D, Zhou J Y, Zhang S S, Yin C, Ding F, Zhang S Q, Yi X H, Wang J Z, Tong L M, Han Y, Liu Z F, Zhang J. Sci Adv, 2018, 4(7): 1 − 7

    23. [23]

      Long M Q, Tang L, Wang D, Li Y L, Shuai Z G. ACS Nano, 2011, 5(4): 2593 − 2600  doi: 10.1021/nn102472s

    24. [24]

      Li J, Zhao M, Zhao C, Jian H, Wang N, Yao L, Huang C, Zhao Y, Jiu T. ACS Appl Mater Interfaces, 2019, 11(3): 2626 − 2631  doi: 10.1021/acsami.8b02611

    25. [25]

      Cui H J, Sheng X L, Yan Q B, Zheng Q R, Su G. Phys Chem Chem Phys, 2013, 15(21): 8179 − 8185  doi: 10.1039/c3cp44457k

    26. [26]

      Jiao Y, Du A J, Hankel M, Zhu Z H, Rudolph V, Smith S C. Chem Commun, 2011, 47(43): 11843 − 11845  doi: 10.1039/c1cc15129k

    27. [27]

      Sun L, Jiang P H, Liu H J, Fan D D, Liang J H, Wei J, Cheng L, Zhang J, Shi J. Carbon, 2015, 90: 255 − 259  doi: 10.1016/j.carbon.2015.04.037

    28. [28]

      Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem Rev, 2018, 118(16): 7744 − 7803  doi: 10.1021/acs.chemrev.8b00288

    29. [29]

      Kim B G, Choi H J. Phys Rev B, 2012, 86(11): 1 − 5

    30. [30]

      Wu L, Dong Y, Zhao J, Ma D, Huang W, Zhang Y, Wang Y, Jiang X, Xiang Y, Li J, Feng Y, Xu J, Zhang H. Adv Mater, 2019, 31(14): 1807981 − 1807991  doi: 10.1002/adma.201807981

    31. [31]

      Yang Z, Liu R, Wang N, He J, Wang K, Li X, Shen X, Wang X, Lv Q, Zhang M, Luo J, Jiu T, Hou Z, Huang C. Carbon, 2018, 137: 442 − 450  doi: 10.1016/j.carbon.2018.05.049

    32. [32]

      Qi S Y, Ma X K, Yang B, Sun L, Li W F, Zhao M W. Carbon, 2019, 149: 234 − 241  doi: 10.1016/j.carbon.2019.04.024

    33. [33]

      Bhattacharya B, Singh N B, Sarkar U. Int J Quantum Chem, 2015, 115(13): 820 − 829  doi: 10.1002/qua.24910

    34. [34]

      Jafari M, Asadpour M, Majelan N A, Faghihnasiri M. Comput Mater Sci, 2014, 82: 391 − 398  doi: 10.1016/j.commatsci.2013.09.054

    35. [35]

      Bhattacharya B, Singh N B, Mondal R, Sarkar U. Phys Chem Chem Phys, 2015, 17(29): 19325 − 19341  doi: 10.1039/C5CP02938D

    36. [36]

      Bhattacharya B, Sarkar U. J Phys Chem C, 2016, 120(47): 26793 − 26806  doi: 10.1021/acs.jpcc.6b07478

    37. [37]

      Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z. J Phys Chem A, 2012, 116(15): 3934 − 3939  doi: 10.1021/jp300107d

    38. [38]

      He J, Ma S Y, Zhou P, Zhang C X, He C, Sun L Z. J Phys Chem C, 2012, 116(50): 26313 − 26321  doi: 10.1021/jp307408u

    39. [39]

      Mashhadzadeh A H, Vahedi A M, Ardjmand M, Ahangari M G. Superlattices Microstruct, 2016, 100: 1094 − 1102  doi: 10.1016/j.spmi.2016.10.079

    40. [40]

      Kim S, Ruiz Puigdollers A, Gamallo P, Vines F, Lee J Y. Carbon, 2017, 120: 63 − 70  doi: 10.1016/j.carbon.2017.05.028

    41. [41]

      Lin Z Z, Wei Q, Zhu X M. Carbon, 2014, 66: 504 − 510  doi: 10.1016/j.carbon.2013.09.027

    42. [42]

      Lin Z Y, Liu G Z, Zheng Y P, Lin Y B, Huang Z G. J Mater Chem A, 2018, 6(45): 22655 − 22661  doi: 10.1039/C8TA08225A

    43. [43]

      Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim S J, Venugopal G. J Phys Chem C, 2015, 119(38): 22057 − 22065  doi: 10.1021/acs.jpcc.5b06138

    44. [44]

      Wang S, Yi L, Halpert J E, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y. Small, 2012, 8(2): 265 − 271  doi: 10.1002/smll.201101686

    45. [45]

      Yang N L, Liu Y Y, Wen H, Tang Z Y, Zhao H J, Li Y L, Wang D. ACS Nano, 2013, 7(2): 1504 − 1512  doi: 10.1021/nn305288z

    46. [46]

      Xiang Q, Yu J, Wang W, Jaroniec M. Chem Commun, 2011, 47(24): 6906 − 6908  doi: 10.1039/c1cc11740h

    47. [47]

      Wang J, Tafen D N, Lewis J P, Hong Z, Manivannan A, Zhi M, Li M, Wu N. J Am Chem Soc, 2009, 131(34): 12290 − 12297  doi: 10.1021/ja903781h

    48. [48]

      Serpone N. J Phys Chem B, 2006, 110(48): 24287 − 24293  doi: 10.1021/jp065659r

    49. [49]

      Dong Y Z, Zhao Y M, Chen Y H, Feng Y Q, Zhu M Y, Ju C G, Zhang B, Liu H B, Xu J L. J Mater Sci, 2018, 53(12): 8921 − 8932  doi: 10.1007/s10853-018-2210-y

    50. [50]

      Ren Y, Dong Y Z, Feng Y Q, Xu J L. Catalysts, 2018, 8(12): 1 − 25

    51. [51]

      Li Y, Xu L, Liu H, Li Y. Chem Soc Rev, 2014, 43(8): 2572 − 2586  doi: 10.1039/c3cs60388a

    52. [52]

      Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L. J Am Chem Soc, 2015, 137(16): 5260 − 5263  doi: 10.1021/ja5131337

    53. [53]

      Zhang X, Zhu M, Chen P, Li Y, Liu H, Li Y, Liu M. Phys Chem Chem Phys, 2015, 17(2): 1217 − 1225  doi: 10.1039/C4CP04683H

    54. [54]

      Pan Q Y, Liu H, Zhao Y J, Chen S Q, Xue B, Kan X N, Huang X W, Liu J, Li Z B. ACS Appl Mater Interfaces, 2019, 11(3): 2740 − 2744  doi: 10.1021/acsami.8b03311

    55. [55]

      Kang B T, Shi H, Wu S, Zhao W, Ai H Q, Lee J Y. Carbon, 2017, 123: 415 − 420  doi: 10.1016/j.carbon.2017.07.087

    56. [56]

      Srinivasu K, Ghosh S K. J Phys Chem C, 2013, 117(49): 26021 − 26028  doi: 10.1021/jp407007n

    57. [57]

      Hardin B E, Snaith H J, Mcgehee M D. Nat Photonics, 2012, 6(3): 162 − 169  doi: 10.1038/nphoton.2012.22

    58. [58]

      Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H, Wang D. Adv Energy Mater, 2015, 5(12): 1500296 − 1500312  doi: 10.1002/aenm.201500296

    59. [59]

      Wu M S, Ceng Z Z, Chen C Y. Electrochim Acta, 2016, 191: 256 − 262  doi: 10.1016/j.electacta.2016.01.041

    60. [60]

      Zhang Z, Cui Z, Zhang K, Feng Y, Meng S. J Electrochem Soc, 2016, 163(5): 644 − 649  doi: 10.1149/2.0371605jes

    61. [61]

      Kunzmann A, Stanzel M, Peukert W, Costa R D, Guldi D M. Adv Energy Mater, 2016, 6(1): 1501075 − 1501085  doi: 10.1002/aenm.201501075

    62. [62]

      Ding Y, Mo L E, Tao L, Ma Y M, Hu L H, Huang Y, Fang X Q, Yao J X, Xi X W, Dai S Y. J Power Sources, 2014, 272: 1046 − 1052  doi: 10.1016/j.jpowsour.2014.09.007

    63. [63]

      Zhu M, Dong Y, Xu J, Zhang B, Feng Y. J Mater Sci, 2019, 54(6): 4893 − 4904  doi: 10.1007/s10853-018-03204-x

    64. [64]

      Li H S, Zhang R, Li Y S, Li Y M, Liu H B, Shi J J, Zhang H Y, Wu H J, Luo Y H, Li D M, Li Y L, Meng Q B. Adv Energy Mater, 2018, 8: 1802012  doi: 10.1002/aenm.201802012

    65. [65]

      Han Y Y, Lu X L, Tang S F, Yin X P, Wei Z W, Lu T B. Adv Energy Mater, 2018, 8: 1702992  doi: 10.1002/aenm.201702992

    66. [66]

      Zhang X S, Wang Q, Jin Z W, Chen Y H, Liu H B, Wang J Z, Li Y L, Liu S Z. Adv Mater Interfaces, 2018, 5(2): 1 − 11

    67. [67]

      Wang N, He, J J, Wang K, Zhao Y J, J iu, T G, Huang, C S, Li Y L. Adv Mater, 2019, 31: 1803202  doi: 10.1002/adma.201803202

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    6. [6]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    11. [11]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    16. [16]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

Metrics
  • PDF Downloads(0)
  • Abstract views(208)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return