Citation: En-ting Deng, Wan-ying Bi, Bo Liu, Li-li Zhang, Jun Shen. Investigation of Chiral Recognition Mechanism of Polysaccharide Derivatives Based on Molecular Simulation[J]. Acta Polymerica Sinica, ;2020, 51(2): 214-220. doi: 10.11777/j.issn1000-3304.2019.19116 shu

Investigation of Chiral Recognition Mechanism of Polysaccharide Derivatives Based on Molecular Simulation

  • As one of the most powerful and popular chiral stationary phases (CSPs), phenylcarbamate derivatives of cellulose and amylose exhibit high chiral recognition ability and have realized efficent enantioseparation for almost 80% chiral compounds. To develop novel enantioseparation materials with high chiral recognition ability, it is of crucial importance to elucidate the chiral recognition mechanism for CSPs. Based on this, cellulose tris(phenylcarbamate) and amylose tris(phenylcarbamate) were synthesized by traditional esterification method in this study. The structures and degrees of substitution of the polysaccharide derivatives were characterized by 1H-NMR, implying that the obtained cellulose and amylose deivatives possessed regular higher order structures and almost complete substitution of phenylcarbamate pendants at three positions on the glucose units. The obtained polysaccharide derivatives were then coated on aminopropyl silica gel to prepare the chiral stationary phases (CSPs). The chiral recognition abilities of the derivatives were evaluated by the high performance liquid chromatography (HPLC) based on the separation of racemic 1-(9-anthryl)-2,2,2-trifluoroethanol (Rac-1). Then, based on the molecular mechanics and the molecular dynamics, molecular simulation of the higher order sturucture of polysaccharide derivatives were performed using Materials Studio software. The optimized conformation for the interaction between polysaccharide derivatives and enantiomers of Rac-1 was achieved by the molecular simulation according to the FTIR and XRD results. The molecular simulation results agreed well with the chiral recognition ability and elution order of enantiomers by HPLC. It indicated that the chiral recognition was significantly dependent on the synergistic interactions between polysaccharide derivatives and enantiomers of Rac-1 at the chiral grooves formed by the carbamate substituents and aromatic rings of the polysaccharide derivatives with different stabilities. This study may contribute to a better understanding for the chiral recognition mechanism of polymer-based CSPs.
  • 加载中
    1. [1]

      Okamoto Y. J Polym Sci, Part A: Polym Chem, 2009, 47: 1731 − 1739  doi: 10.1002/pola.23215

    2. [2]

      Ikai T, Okamoto Y. Chem Rev, 2009, 109: 6077 − 6101  doi: 10.1021/cr8005558

    3. [3]

      Shen J, Okamoto Y. Chem Rev, 2016, 116: 1094 − 1138  doi: 10.1021/acs.chemrev.5b00317

    4. [4]

      Yamamoto C, Yashima E, Okamoto Y. J Am Chem Soc, 2002, 124: 12583 − 12589  doi: 10.1021/ja020828g

    5. [5]

      Shen J, Liu S, Li P. J Chromatogr A, 2012, 1246: 137 − 144  doi: 10.1016/j.chroma.2012.05.002

    6. [6]

      Shen J, Li G, Li Q. Chirality, 2015, 27: 518 − 522  doi: 10.1002/chir.22472

    7. [7]

      Shen J, Li G, Yang Z. J Chromatogr A, 2016, 1467: 199 − 205  doi: 10.1016/j.chroma.2016.07.035

    8. [8]

      Shen J, Wang F, Bi W. J Chromatogr A, 2018, 1572: 54 − 61  doi: 10.1016/j.chroma.2018.08.032

    9. [9]

      Ma S, Tsui H W, Spinelli E. J Chromatogr A, 2014, 1362: 119 − 128  doi: 10.1016/j.chroma.2014.08.032

    10. [10]

      Chen Shenghui(陈生辉), Sun Shuangqing(孙霜青), Gwaltney S R, Li Chunling(李春玲), Wang Xiumin(王秀民), Hu Songqing(胡松青). Acta Polymerica Sinica(高分子学报), 2015, (10): 1158 − 1164  doi: 10.11777/j.issn1000-3304.2015.15053

    11. [11]

      Chen Shenghui(陈生辉), Lv Qiang(吕强), Guo Jicheng(郭继成), Wang Zhikun(王志坤), Sun Shuangqing(孙霜青), Hu Songqing(胡松青). Acta Polymerica Sinica(高分子学报), 2017, (4): 716 − 726  doi: 10.11777/j.issn1000-3304.2017.16201

    12. [12]

      Yashima E, Yamamoto C, Okamoto Y. J Am Chem Soc, 1996, 118: 4036 − 4048  doi: 10.1021/ja960050x

    13. [13]

      Kasat R B, Wang N H L, Franses E I. Biomacromolecules, 2007, 8: 1676 − 1685  doi: 10.1021/bm070006h

    14. [14]

      Kasat R B, Wee S Y, Loh J X. J Chromatogr B, 2008, 875: 81 − 92  doi: 10.1016/j.jchromb.2008.06.045

    15. [15]

      Kasat R B, Franses E I, Wang N H L. Chirality, 2010, 22: 565 − 579

    16. [16]

      Tsui H W, Wang N H L, Franses E I. J Phys Chem B, 2013, 117: 9203 − 9216  doi: 10.1021/jp404549t

    17. [17]

      Zugenmaier P, Steinmeier H. Polymer, 1986, 27: 1601 − 1608  doi: 10.1016/0032-3861(86)90111-4

    18. [18]

      Vogt U, Zugenmaier P. Berichte der Bunsengesellschaft für Physikalische Chemie, 1985, 89: 1217 − 1224  doi: 10.1002/bbpc.19850891120

    19. [19]

      Okamoto Y, Kawashima M, Hatada K. J Chromatogr A, 1986, 363: 173 − 186  doi: 10.1016/S0021-9673(01)83736-5

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    14. [14]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(209)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return