Citation: Hang-sheng Zhou, Kang Li, Ya-wei Qin, Jin-yong Dong. Synthesis of Long Chain-branched Polypropylene Based on Dichlorosilane-functionalized Nonconjugated α,ω-Diolefin and Ziegler-Natta Catalyst[J]. Acta Polymerica Sinica, ;2019, 50(11): 1177-1186. doi: 10.11777/j.issn1000-3304.2019.19078 shu

Synthesis of Long Chain-branched Polypropylene Based on Dichlorosilane-functionalized Nonconjugated α,ω-Diolefin and Ziegler-Natta Catalyst

  • Corresponding author: Ya-wei Qin, ywqin@iccas.ac.cn Jin-yong Dong, jydong@iccas.ac.cn
  • Received Date: 17 April 2019
    Revised Date: 28 April 2019
    Available Online: 11 June 2019

  • This study discusses a new strategy for synthesis of long chain-branched polypropylene (LCB-PP) with Ziegler-Natta catalysts, which, on the basis of conventional nonconjugated α,ω-diolefin/propylene copolymerization incapable of affording LCB, utilizes a dichlorosilane-functionalized α,ω-diolefin instead to carry out the copolymerization. Such a copolymerization with Ziegler-Natta catalysts will give PP bearing pending dichlorosilane functional groups, and it will undergo facile interchain condensations, leading to long chain-branched formation under methanol treatment and water vapor treatment. A MgCl2/TiCl4 catalyst containing a diether-type internal electron donor, 9,9-bis(methoxymethyl)fluorine (BMMF), was employed to catalyze di(5-hexenyl)dichlorosilane/propylene copolymerization in slurry conditions. It was found that di(5-hexenyl)dichlorosilane neither did harm to catalyst activity, nor changed the chain transfer/chain termination reaction of the original propylene polymerization. Incorporations of the mono-polymerized di(5-hexenyl)dichlorosilane were found to be between 0.02 mol% and 0.1 mol%. After the copolymerization completed, the obtained copolymers were treated with methanol or water vapor, respectively. Both the treatments could effectively transform the polymer chains-pending dichlorosilane groups into siloxane groups. The condensation degrees were distributed, which were centralized between 2 and 3 with methanol treatment. Water vapor treatment showed higher efficiency for dichlorosilane condensation than methanol treatment did. It could be found that water-treated samples exhibited systematically higher degrees of long chain-branched than their methanol-treated counterparts did with multiple evidences. Gel permeation chromatography measurement showed that the molecular weights of the copolymerized samples treated by both water vapor and methanol were improved, and the copolymers treated by water vapor in the Mark-Houwink equation curve were more deviated from the linear polypropylene than those of methanol treatment. The linear viscoelasticity of copolymers with different di(5-hexenyl)dichlorosilane concentrations after water vapor treatment and methanol treatment was investigated by means of small amplitude oscillatory shear (SAOS) to verify the existence of long chain-branched structure. According to extensional rheometry measurement, the strain hardening phenomena of the copolymers treated with water vapor were more obvious than those treated with methanol.
  • 加载中
    1. [1]

      Wang Hongying(王红英), Hu Xuteng(胡徐腾), Li Zhenyu(李振宇), Yi Jianjun(义建军), Dong Jinyong(董金勇). Prog Chem(化学进展), 2007, 19(6): 932 − 958

    2. [2]

      Borsig E, van Duin M, Gotsis A D, Picchioni F. Eur Polym J, 2008, 44(1): 200 − 212  doi: 10.1016/j.eurpolymj.2007.10.008

    3. [3]

      Shamiri A, Chakrabarti M H, Jahan S, Hussain M A, Kaminsky W, Aravind P V, Yehye W A. Materials (Basel), 2014, 7(7): 5069 − 5108  doi: 10.3390/ma7075069

    4. [4]

      Yoshii F, Makuuchi K, Kikukawa S, Tanaka T, Saitoh J, Koyama K. J Appl Polym Sci, 1996, 60(4): 617 − 623  doi: 10.1002/(ISSN)1097-4628

    5. [5]

      Ratzsch M, Arnold M, Borsig E, Bucka H, Reichelt N. Prog Polym Sci, 2002, 27(7): 1195 − 1282  doi: 10.1016/S0079-6700(02)00006-0

    6. [6]

      Hamielec A E, Soares J B P. Prog Polym Sci, 1996, 21(4): 651 − 706  doi: 10.1016/0079-6700(96)00001-9

    7. [7]

      Braunschweig H, Breitling F M. Coord Chem Rev, 2006, 250(21-22): 2691 − 2720  doi: 10.1016/j.ccr.2005.10.022

    8. [8]

      Bernasconi E, Greco F, Longi P, Valvassori A. US patent, C08g, 3658770. 1972

    9. [9]

      Shi Jianjun(师建军), Qin Yawei(秦亚伟), Niu Hui(牛慧), Dong Jinyong(董金勇). Petrochem Technol(石油化工), 2014, 43(6): 618 − 624

    10. [10]

      Naga N, Shiono T, Ikeda T. Macromolecules, 1999, 32(5): 1348 − 1355  doi: 10.1021/ma9814144

    11. [11]

      Yang T T, Qin Y W, Dong J Y. Macromolecules, 2018, 51(22): 9234 − 9249  doi: 10.1021/acs.macromol.8b01958

    12. [12]

    13. [13]

      Smith A L. Spectrochimica Acta, 1960, 16(1-2): 87 − 105  doi: 10.1016/0371-1951(60)80074-4

    14. [14]

      Harris G I. J Chem Soc B, 1970, (3): 492 − 496

    15. [15]

      Tian J H, Yu W, Zhou C X. Polymer, 2006, 47(23): 7962 − 7969  doi: 10.1016/j.polymer.2006.09.042

    16. [16]

      Larson R G. Macromolecules, 2001, 34(13): 4556 − 4571  doi: 10.1021/ma000700o

    17. [17]

      van Ruymbeke E, Keunings R, Stephenne V, Hagenaars A, Bailly C. Macromolecules, 2002, 35(7): 2689 − 2699  doi: 10.1021/ma011271c

    18. [18]

      Gabriel C, Munstedt H. Rheol Acta, 2002, 41(3): 232 − 244  doi: 10.1007/s00397-001-0219-6

    19. [19]

      Kolodka E, Wang W J, Zhu S P, Hamielec A E. Macromolecules, 2002, 35(27): 10062 − 10070  doi: 10.1021/ma021171m

    20. [20]

      El Mabrouk K, Parent J S, Chaudhary B I, Cong R J. Polymer, 2009, 50(23): 5390 − 5397  doi: 10.1016/j.polymer.2009.09.066

  • 加载中
    1. [1]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    4. [4]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    10. [10]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    18. [18]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(324)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return