Citation: Ling-ling Yu, Rui-hua Cheng, Yu-tao Tong, Bo-ping Liu. Synthesis and Properties of Hydrophilic Poly(propylene carbonate) under UV Irradiation[J]. Acta Polymerica Sinica, ;2019, 50(11): 1196-1201. doi: 10.11777/j.issn1000-3304.2019.19053 shu

Synthesis and Properties of Hydrophilic Poly(propylene carbonate) under UV Irradiation

  • Corresponding author: Rui-hua Cheng, rhcheng@ecust.edu.cn
  • Received Date: 18 March 2019
    Revised Date: 9 April 2019
    Available Online: 10 May 2019

  • To improve the hydrophilic properties of poly(propylene carbonate) (PPC), hydroxyl-functionalized PPC (PPC-OH) were prepared by two steps. First, PPC containing o-nitrobenzyl (ONB) protecting groups (PPC-ONB) were synthesized by terpolymerization reactions of 2-{[(2-nitrophenyl)methoxy]-methyl}oxirane (monomer a ), propylene oxide (PO), and CO2 over SalenCo(III)Cl/bis(triphenylphosphine)iminium chloride (PPNCl) catalyst system. 1H-NMR result showed that the PPC-ONB was a random copolymer with monomer a randomly inserted. Then PPC-OH were obtained with the removal of o-nitrobenzyl (ONB) protecting groups under ultraviolet (UV) irradiation. PPC-ONB were synthesized with various feed ratios of the monomer a and different reaction time. Based on the analysis of 1H-NMR, 13C-NMR, gel permeation chromatography (GPC), and differential scanning calorimeter (DSC), SalenCo(III)Cl catalyst performed high reactivity and high selectivity (> 94%). The polycarbonate exhibited excellent regioselectivity and perfect alternating copolymerization of CO2 and PO with the carbonate linkages up to 98%, and the head-to-tail linkage (HT) up to 99%. With the increase of the feed ratios of the monomer a , the polymer ratio of the monomer a increased to 19.4% without sacrificing the reactive activity, while the molecular weight (Mn) decreased slightly owing to the better reactivity of monomer a . The glass transition temperatures (Tg) were in the range of 35.7 − 38.9 °C. The kinetics of deprotection by UV irradiation proved that the ONB protecting groups could be carried out efficiently within minutes. And the characterization of polymer by 1H-NMR, Fourier transform infrared spectrometer (FTIR) and GPC showed that the ONB protecting groups were removed and the ―OH was observed. Meanwhile, no degradation of polymer backbone occurred. The contact angle (CA) measurement of PPC-ONB and PPC-OH displayed a difference in hydrophilia. The hydrophilia of PPC-OH has been greatly improved compared with PPC-ONB due to the increase in polarity, and the CA of PPC-OH decreased from 78.3° to 58.6° when the molar ratio of ―OH increased to 19.4%.
  • 加载中
    1. [1]

      Poland S J, Darensbourg D J. Green Chem, 2017, 19(21): 4990 − 5011  doi: 10.1039/C7GC02560B

    2. [2]

      Qin Yusheng(秦玉升), Wang Xianhong(王献红), Wang Fosong(王佛松). Sci China Chem(中国科学: 化学), 2018, 48(8): 883 − 893

    3. [3]

      Li Jiajia(李佳佳), Zhou Yujie(周宇杰), Cheng Ruihua(程瑞华), Liu Boping(刘柏平). Acta Polymerica Sinica(高分子学报), 2017, (12): 1915 − 1922  doi: 10.11777/j.issn1000-3304.2017.17049

    4. [4]

      Inoue S, Koinuma H, Tsuruta T. Macromol Chem Phys, 1969, 130(1): 210 − 220  doi: 10.1002/macp.1969.021300112

    5. [5]

      Zhang X H, Wei R J, Zhang Y Y, Du B Y, Fan Z Q. Macromolecules, 2015, 48(3): 536 − 544  doi: 10.1021/ma5023742

    6. [6]

      Qin Z Q, Thomas C M, Lee S, Coates G W. Angew Chem Int Ed, 2003, 42(44): 5484 − 5487  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Klaus S, Lehenmeier M W, Herdtweck E, Deglmann P, Ott A K, Rieger B. J Am Chem Soc, 2011, 133(33): 13151 − 13161  doi: 10.1021/ja204481w

    8. [8]

      Ren W M, Zhang W Z, Lu X B. Sci China Chem, 2010, 53(8): 1646 − 1652  doi: 10.1007/s11426-010-4049-1

    9. [9]

      Qin Yusheng(秦玉升), Gu Lin(顾林), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2013, (5): 600 − 608

    10. [10]

      Liu J, Ren W M, Lu X B. Sci China Chem, 2015, 58(6): 999 − 1004  doi: 10.1007/s11426-014-5263-z

    11. [11]

      Wang Y Y, Fan J W, Darensbourg D J. Angew Chem Int Ed, 2015, 54(35): 10206 − 10210  doi: 10.1002/anie.201505076

    12. [12]

      Dai Y, Zhang X J. Polym Chem, 2019, 10(3): 296 − 305  doi: 10.1039/C8PY01365A

    13. [13]

      Yang X L, Xing X, Li J, Liu Y H, Wang N, Yu X Q. RSC Adv, 2019, 9(11): 6003 − 6010  doi: 10.1039/C8RA10282A

    14. [14]

      Scharfenberg M, Hilf J, Frey H. Adv Funct Mater, 2018, 28(10): 1704302  doi: 10.1002/adfm.v28.10

    15. [15]

      Zhang H, Grinstaff M W. J Am Chem Soc, 2013, 135(18): 6806 − 6809  doi: 10.1021/ja402558m

    16. [16]

      Zhang J F, Ren W M, Sun X K, Meng Y, Du B Y, Zhang X H. Macromolecules, 2011, 44(24): 9882 − 9886  doi: 10.1021/ma202062g

    17. [17]

      Fu Shuangbin(付双滨), Qin Yusheng(秦玉升), Qiao Lijun(乔立军), Wang Xianhong(王献红), Wang Fosong(王佛松). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 338 − 343  doi: 10.11777/j.issn1000-3304.2018.18274

    18. [18]

      Darensbourg D J, Tsai F T. Macromolecules, 2014, 47(12): 3806 − 3813  doi: 10.1021/ma500834r

    19. [19]

      Li Y, Zhang Y Y, Hu L F, Zhang X H, Du B Y, Xu J T. Prog Polym Sci, 2018, 82: 120 − 157  doi: 10.1016/j.progpolymsci.2018.02.001

    20. [20]

      Tsai F T, Wang Y Y, Darensbourg D J. J Am Chem Soc, 2016, 138(13): 4626 − 4633  doi: 10.1021/jacs.6b01327

    21. [21]

      Song P F, Shang Y Q, Chong S Y, Zhu X G, Xu H D, Xiong Y B. RSC Adv, 2015, 5(41): 32092 − 32095  doi: 10.1039/C5RA02854J

    22. [22]

      Wu X J, Zhao H, Nörnberg B, Theato P, Luinstra G A. Macromolecules, 2014, 47(2): 492 − 497  doi: 10.1021/ma401899h

    23. [23]

      Lu X B, Shi L, Wang Y M, Zhang R, Zhang Y J, Peng X J, Zhang Z C, Li B. J Am Chem Soc, 2006, 128(5): 1664 − 1874  doi: 10.1021/ja056383o

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    19. [19]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    20. [20]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

Metrics
  • PDF Downloads(0)
  • Abstract views(213)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return