Citation: Chen-zhi Yao, Xiao-rui Wang, Jin-ming Hu, Shi-yong Liu. Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes[J]. Acta Polymerica Sinica, ;2019, 50(6): 553-566. doi: 10.11777/j.issn1000-3304.2019.19031 shu

Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes

  • Corresponding author: Shi-yong Liu, sliu@ustc.edu.cn
  • Received Date: 10 February 2019
    Revised Date: 26 March 2019
    Available Online: 26 April 2019

  • Polymersomes, also referred to as polymer vesicles, are self-assembled from amphiphilic synthetic polymers, representing a type of hollow nanostructures containing aqueous lumens enclosed by bilayer membranes. This unique hollow and compartmentalized structure has been extensively used in the fabrication of artificial cells, drug carriers, and nanoreactors. Albeit more stable than liposomes, polymersomes exhibit relatively low permeability toward macromolecules, small molecules, ions, and even water molecules. This drawback remarkably hampers the biomedical applications of polymersomes. Thus, it is of crucial importance to regulate the permeability of polymersomes while maintaining structural integrity. Although a number of methods have been proposed to enhance the permeability of polymersomes such as the fabrication of stimuli-responsive polymersomes and the introduction of channel proteins, these procedures suffer from either tedious protocols or disruption of the vesicular structures. In this feature article, we summarize our recent achievements in the (ir)reversible regulation of the permeability of polymersomes. First, we conceived a new concept, termed as " traceless” cross-linking, to synergistically stabilize and permeate polymersomes. This concept originates from photoresponsive polymersomes, in which we found that the photo-caged primary amines underwent inter/intrachain amidation reactions other than protonation reactions within the initially hydrophobic bilayer membranes. Moreover, this robust strategy can be readily extended to other bio-related triggering events such as enzyme and redox. Notably, " traceless” cross-linking generally led to irreversible chemical cross-linking of polymersomes. Thus, in the following section, we showcased the representative examples in reversible modulation the permeability of polymersomes by taking advantage of cooperative noncovalent interactions. These new methodologies successfully resolve the dilemma of the structural stability and bilayer permeability of polymersomes and can be used for the fabrication of smart nanocarriers and nanoreactors. Finally, we give a brief summary and outlook of this emerging field.
  • 加载中
    1. [1]

      Hill J P, Jin W S, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304(5676): 1481 − 1483  doi: 10.1126/science.1097789

    2. [2]

      Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684 − 1688  doi: 10.1126/science.1063187

    3. [3]

      Marguet M, Bonduelle C, Lecommandoux S. Chem Soc Rev, 2013, 42(2): 512 − 529  doi: 10.1039/C2CS35312A

    4. [4]

      Checot F, Lecommandoux S, Gnanou Y, Klok H A. Angew Chem Int Ed, 2002, 41(8): 1339 − 1343  doi: 10.1002/1521-3773(20020415)41:8<>1.0.CO;2-M

    5. [5]

      Vanhest J C M, Delnoye D A P, Baars M W P L, Vangenderen M H P, Meijer E W. Science, 1995, 268(5217): 1592 − 1595  doi: 10.1126/science.268.5217.1592

    6. [6]

      Du J Z, O’Reilly R K. Chem Soc Rev, 2011, 40(5): 2402 − 2416  doi: 10.1039/c0cs00216j

    7. [7]

      Zhu J H, Zhang S Y, Zhang K, Wang X J, Mays J W, Wooley K L, Pochan D J. Nat Commun, 2013, 4: 2297  doi: 10.1038/ncomms3297

    8. [8]

    9. [9]

      Bai Y, Xie F Y, Tian W. Chinese J Polym Sci, 2018, 36(3): 406 − 416  doi: 10.1007/s10118-018-2086-y

    10. [10]

      Chen S L, Shi P F, Zhang W Q. Chinese J Polym Sci, 2017, 35(4): 455 − 479  doi: 10.1007/s10118-017-1907-8

    11. [11]

      Feng X R, Ding J X, Gref R, Chen X S. Chinese J Polym Sci, 2017, 35(6): 693 − 699  doi: 10.1007/s10118-017-1932-7

    12. [12]

      Gan Y A, Wang Z D, Lu Z X, Shi Y, Tan H Y, Yan C F. Chinese J Polym Sci, 2018, 36(6): 728 − 735  doi: 10.1007/s10118-018-2066-2

    13. [13]

      Jing X W, Huang Z Y, Lu H S, Wang B G. Chinese J Polym Sci, 2018, 36(1): 18 − 24  doi: 10.1007/s10118-018-2008-z

    14. [14]

      Li X X, Huo X, Han H J, Lin S L. Chinese J Polym Sci, 2017, 35(11): 1363 − 1372  doi: 10.1007/s10118-017-1963-0

    15. [15]

      Liu D, Wang Y Y, Sun Y C, Han Y Y, Cui J, Jiang W. Chinese J Polym Sci, 2018, 36(7): 888 − 896  doi: 10.1007/s10118-018-2106-y

    16. [16]

      Lu B B, Wei L L, Meng G H, Hou J, Liu Z Y, Guo X H. Chinese J Polym Sci, 2017, 35(8): 924 − 938  doi: 10.1007/s10118-017-1947-0

    17. [17]

      Lu X J, Yang X Y, Meng Y, Li S Z. Chinese J Polym Sci, 2017, 35(4): 534 − 546  doi: 10.1007/s10118-017-1916-7

    18. [18]

      Lyu X L, Pan H B, Shen Z H, Fan X H. Chinese J Polym Sci, 2018, 36(7): 811 − 821  doi: 10.1007/s10118-018-2115-x

    19. [19]

      Meng F D, Ni Y X, Ji S F, Fu X H, Wei Y H, Sun J, Li Z B. Chinese J Polym Sci, 2017, 35(10): 1243 − 1252  doi: 10.1007/s10118-017-1959-9

    20. [20]

      Xu M M, Liu R J, Yan Q. Chinese J Polym Sci, 2018, 36(3): 347 − 365  doi: 10.1007/s10118-018-2080-4

    21. [21]

      Xu Y L, Qu A T, Ma R J, Li A, Zhang Z K, Shang Z Q, Zhang Y F, Bu L X, An Y L. Chinese J Polym Sci, 2018, 36(11): 1262 − 1268  doi: 10.1007/s10118-018-2149-0

    22. [22]

      Zhang W M, Zhang J, Qiao Z, Yin J. Chinese J Polym Sci, 2018, 36(3): 273 − 287  doi: 10.1007/s10118-018-2035-9

    23. [23]

      Zheng C X, Zhao Y, Liu Y. Chinese J Polym Sci, 2018, 36(3): 322 − 346  doi: 10.1007/s10118-018-2078-y

    24. [24]

      Wang X R, Liu G H, Hu J M, Zhang G Y, Liu S Y. Angew Chem Int Ed, 2014, 53(12): 3138 − 3142  doi: 10.1002/anie.201310589

    25. [25]

      Discher D E, Ortiz V, Srinivas G, Klein M L, Kim Y, David C A, Cai S S, Photos P, Ahmed F. Prog Polym Sci, 2007, 32(8-9): 838 − 857  doi: 10.1016/j.progpolymsci.2007.05.011

    26. [26]

      Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10(2): 197 − 209  doi: 10.1021/bm801127d

    27. [27]

      Wang F Y K, Xiao J G, Chen S, Sun H, Yang B, Jiang J H, Zhou X, Du J Z. Adv Mater, 2018, 30(17): 1705674  doi: 10.1002/adma.v30.17

    28. [28]

      Xiao Y F, Sung H, Du J Z. J Am Chem Soc, 2017, 139(22): 7640 − 7647  doi: 10.1021/jacs.7b03219

    29. [29]

      Wilson D A, Nolte R J M, van Hest J C M. Nat Chem, 2012, 4(4): 268 − 274  doi: 10.1038/nchem.1281

    30. [30]

      Vriezema D M, Garcia P M L, Oltra N S, Hatzakis N S, Kuiper S M, Nolte R J M, Rowan A E, van Hest J C M. Angew Chem Int Ed, 2007, 46(39): 7378 − 7382  doi: 10.1002/(ISSN)1521-3773

    31. [31]

      Wang X R, Hu J M, Liu G H, Tian J, Wang H J, Gong M, Liu S Y. J Am Chem Soc, 2015, 137(48): 15262 − 15275  doi: 10.1021/jacs.5b10127

    32. [32]

      Yao C, Wang X, Liu G, Hu J, Liu S. Macromolecules, 2016, 49(21): 8282 − 8295  doi: 10.1021/acs.macromol.6b01374

    33. [33]

      Zhu K, Liu G, Zhang G, Hu J, Liu S. Macromolecules, 2018, 51(21): 8530 − 8538  doi: 10.1021/acs.macromol.8b01653

    34. [34]

      Sun Z, Liu G, Hu J, Liu S. Biomacromolecules, 2018, 19(6): 2071 − 2081  doi: 10.1021/acs.biomac.8b00253

    35. [35]

      Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Acc Chem Res, 2011, 44(10): 1039 − 1049  doi: 10.1021/ar200036k

    36. [36]

      Bian B, Zhang Y Y, Dong Y C, Wu F, Wang C, Wang S, Xu Y, Liu D S. Sci China Chem, 2018, 61(12): 1568 − 1571  doi: 10.1007/s11426-018-9309-5

    37. [37]

      Wu S X, Li J, Liang H, Wang L P, Chen X, Jin G X, Xu X P, Yang H H. Sci China Chem, 2017, 60(5): 628 − 634  doi: 10.1007/s11426-016-0351-5

    38. [38]

      Xiao J G, Hu Y, Du J Z. Sci China Chem, 2018, 61(5): 569 − 575  doi: 10.1007/s11426-017-9209-3

    39. [39]

      Yang S, Luan Z L, Gao C, Yu J J, Qu D H. Sci China Chem, 2018, 61(3): 306 − 310  doi: 10.1007/s11426-017-9104-x

    40. [40]

      Zhang Y Y, Li M, Li Z H, Li Q, Aldalbahi A, Shi J Y, Wang L H, Fan C H, Zuo X L. Sci China Chem, 2017, 60(11): 1474 − 1480  doi: 10.1007/s11426-017-9036-0

    41. [41]

      Zhou Y B, Liu H X, Zhao N, Wang Z M, Michael M Z, Xie N, Tang B Z, Tang Y H. Sci China Chem, 2018, 61(8): 892 − 897  doi: 10.1007/s11426-018-9287-x

    42. [42]

      Discher D E, Eisenberg A. Science, 2002, 297(5583): 967 − 973  doi: 10.1126/science.1074972

    43. [43]

      Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, Hunziker P. Nano Lett, 2006, 6(10): 2349 − 2353  doi: 10.1021/nl0619305

    44. [44]

      Kim K T, Cornelissen J J L M, Nolte R J M, van Hest J C M. Adv Mater, 2009, 21(27): 2787 − 2791  doi: 10.1002/adma.200900300

    45. [45]

      Amstad E, Kim S H, Weitz D A. Angew Chem Int Ed, 2012, 51(50): 12499 − 12503  doi: 10.1002/anie.201206531

    46. [46]

      Hu J M, Zhang G Q, Liu S Y. Chem Soc Rev, 2012, 41(18): 5933 − 5949  doi: 10.1039/c2cs35103j

    47. [47]

      Yan Q, Wang J B, Yin Y W, Yuan J Y. Angew Chem Int Ed, 2013, 52(19): 5070 − 5073  doi: 10.1002/anie.201300397

    48. [48]

      Koide A, Kishimura A, Osada K, Jang W D, Yamasaki Y, Kataoka K. J Am Chem Soc, 2006, 128(18): 5988 − 5989  doi: 10.1021/ja057993r

    49. [49]

      Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N. J Am Chem Soc, 2013, 135(24): 9204 − 9212  doi: 10.1021/ja404175x

    50. [50]

      Chambon P, Blanazs A, Battaglia G, Armes S P. Langmuir, 2012, 28(2): 1196 − 1205  doi: 10.1021/la204539c

    51. [51]

      Read E S, Armes S P. Chem Commun, 2007, 43(29): 3021 − 3035

    52. [52]

      Habault D, Zhang H J, Zhao Y. Chem Soc Rev, 2013, 42(17): 7244 − 7256  doi: 10.1039/c3cs35489j

    53. [53]

      Zhu K, Deng Z, Liu G, Hu J, Liu S. Macromolecules, 2017, 50(3): 1113 − 1125  doi: 10.1021/acs.macromol.6b02162

    54. [54]

      Deng H, Zhong Y, Du M, Liu Q, Fan Z, Dai F, Zhang X. Theranostics, 2014, 4(9): 904 − 918  doi: 10.7150/thno.9448

    55. [55]

      He J, Huang X, Li Y C, Liu Y, Babu T, Aronova M A, Wang S, Lu Z, Chen X, Nie Z. J Am Chem Soc, 2013, 135(21): 7974 − 7984  doi: 10.1021/ja402015s

    56. [56]

      Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, Leapman R D, Nie Z, Chen X. Angew Chem Int Ed, 2013, 52(52): 13958 − 13964  doi: 10.1002/anie.201308986

    57. [57]

      Wang C, Zhang G Y, Liu G H, Hu J M, Liu S Y. J Control Release, 2017: 259149 − 159

    58. [58]

      Marguet M, Sandre O, Lecommandoux S. Langmuir, 2012, 28(4): 2035 − 2043  doi: 10.1021/la204018w

    59. [59]

      Xu W, Ledin P A, Iatridi Z, Tsitsilianis C, Tsukruk V V. Angew Chem Int Ed, 2016, 55(16): 4908 − 4913  doi: 10.1002/anie.201600383

    60. [60]

      Li Y M, Liu G H, Wang X R, Hu J M, Liu S Y. Angew Chem Int Ed, 2016, 55(5): 1760 − 1764  doi: 10.1002/anie.201509401

    61. [61]

      Ding Y, Kang Y T, Zhang X. Chem Commun, 2015, 51(6): 996 − 1003  doi: 10.1039/C4CC05878J

    62. [62]

      Hotamisligil G S. Nature, 2006, 444(7121): 860 − 867  doi: 10.1038/nature05485

    63. [63]

      Circu M L, Aw T Y. Free Radical Biol Med, 2010, 48(6): 749 − 762  doi: 10.1016/j.freeradbiomed.2009.12.022

    64. [64]

      Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, Liu S. J Am Chem Soc, 2016, 138(33): 10452 − 10466  doi: 10.1021/jacs.6b04115

    65. [65]

      Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. J Control Release, 2011, 152(1): 2 − 12  doi: 10.1016/j.jconrel.2011.01.030

    66. [66]

      Deng Z Y, Yuan S, Xu R X, Liang H J, Liu S Y. Angew Chem Int Ed, 2018, 57(29): 8896 − 8900  doi: 10.1002/anie.201802909

    67. [67]

      Che H L, van Hest J C M. J Mater Chem, 2016, 4(27): 4632 − 4647  doi: 10.1039/C6TB01163B

    68. [68]

      Che H L, Cao S P, van Hest J C M. J Am Chem Soc, 2018, 140(16): 5356 − 5359  doi: 10.1021/jacs.8b02387

    69. [69]

      Yan Q, Zhou R, Fu C K, Zhang H J, Yin Y W, Yuan J Y. Angew Chem Int Ed, 2011, 50(21): 4923 − 4927  doi: 10.1002/anie.v50.21

    70. [70]

      Feng A C, Zhan C B, Yan Q, Liu B W, Yuan J Y. Chem Commun, 2014, 50(64): 8958 − 8961  doi: 10.1039/C4CC03156C

    71. [71]

      Hu X L, Zhai S D, Liu G H, Xing D, Liang H J, Liu S Y. Adv Mater, 2018, 30(21): 1706307  doi: 10.1002/adma.v30.21

    72. [72]

      Liu G H, Shi G H, Sheng H Y, Jiang Y Y, Liang H J, Liu S Y. Angew Chem Int Ed, 2017, 56(30): 8686 − 8691  doi: 10.1002/anie.v56.30

    73. [73]

      Liu G H, Zhang G F, Hu J M, Wang X R, Zhu M Q, Liu S Y. J Am Chem Soc, 2015, 137(36): 11645 − 11655  doi: 10.1021/jacs.5b05060

    74. [74]

      Hu X L, Liu G H, Li Y, Wang X R, Liu S Y. J Am Chem Soc, 2015, 137(1): 362 − 368  doi: 10.1021/ja5105848

    75. [75]

      Liu G H, Wang X R, Hu J M, Zhang G Y, Liu S Y. J Am Chem Soc, 2014, 136(20): 7492 − 7497  doi: 10.1021/ja5030832

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    17. [17]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    18. [18]

      Yang LULiangliang HUANGWei ZHAOXin WANGYanfeng BI . Syntheses, proton conduction, and transport mechanism of two three-dimensional lanthanum phosphite-oxalates. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2127-2137. doi: 10.11862/CJIC.20250149

    19. [19]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(0)
  • Abstract views(276)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return