Citation: Li-rong Tian, Li Yang, Zhan-hua Wang, He-sheng Xia. Room-temperature Self-healable and Reprocessable Polyurethane Elastomers Combined Diels-Alder Bond and Disulfide Bond[J]. Acta Polymerica Sinica, ;2019, 50(5): 527-534. doi: 10.11777/j.issn1000-3304.2019.19021 shu

Room-temperature Self-healable and Reprocessable Polyurethane Elastomers Combined Diels-Alder Bond and Disulfide Bond

  • We synthesized a self-healing polyurethane elastomer (PU-SSDA) which displayed excellent healing efficiency at room temperature due to the synergistic contribution of dynamic covalent D-A bond and S–S bond. Mechanical and self-healing properties of the polyurethane elastomers were characterized by tensile test and three-dimensional super depth of field microscope. The cross-linking structure of PU-SSDA is explored by extraction experiments, demonstrating that there are not only crosslinked structures but also linear molecular segments existed in the polyurethane elastomer. Mechanical properties of the PU-SSDA elastomer can be tuned by changing the cross-linking degree. As the crosslinking degree increases from 25% to 45%, the tensile strength increases from 2.9 MPa to 5.5 MPa while the elongation at break decreases from 795% to 304%. After optimization, when the crosslinking degree was 35%, the tensile strength was 3.7 MPa, the elongation at break was 606% and the repair efficiency could be restored to 93% after healing for 60 min at room temperature. Moreover, the healing efficiency still remains above 90% after 4 damage-healing cycles. In addition, the PU-SSDA elastomer can also be reprocessed by hot pressing at 120 °C. This excellent self-healing behavior and reprocessable property were attributed to the reversible fracture recombination reaction of dynamic D-A and S―S bonds and the quick infiltration of the linear polymer chains into damaged surface. The self-healing mechanism can be further confirmed by the dissolution experiments which showed that the PU-SSDA elastomer can be dissolved in DMF at 100 °C while the PU-control can only swell under the same conditions, demonstrating that the reversible cleavage and reformation of D-A and S―S bonds contribute a lot to the self-healing process. Due to the facile and friendly preparation method, fast self-healing behavior at room temperature and fully reprocessable properties, the as-prepared polyurethane elastomers displayed wide potential applications such as protection coatings and wearable electronic devices.
  • 加载中
    1. [1]

      Rule J D, Brown E N, Sottos N R, White S R, Moore J S. Adv Mater, 2005, 17(2): 205 − 208  doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Huang J H, Kim J, Agrawal N, Sudarsan A P, Maxim J E, Jayaraman A, Ugaz V M. Adv Mater, 2009, 21(35): 3567 − 3571  doi: 10.1002/adma.v21:35

    3. [3]

      Roy N, Bruchmann B, Lehn J M. Chem Soc Rev, 2015, 44(11): 3786 − 3807  doi: 10.1039/C5CS00194C

    4. [4]

      Oehlenschlaeger K K, Mueller J O, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote M L, Schmidt F G, Christopher B K. Adv Mater, 2014, 26(21): 3561 − 3566  doi: 10.1002/adma.v26.21

    5. [5]

      Chao A, Negulescu I, Zhang D H. Macromolecules, 2016, 49(17): 6277 − 6284  doi: 10.1021/acs.macromol.6b01443

    6. [6]

      Chen X X, Dam M A, Ono K, Mal A, Shen H B, Nutt S R, Sheran K, Wudl F. Science, 2002, 295(5560): 1698 − 1702  doi: 10.1126/science.1065879

    7. [7]

      Liu Y L, Chen Y W. Macromol Chem Phys, 2007, 208(2): 224 − 232  doi: 10.1002/(ISSN)1521-3935

    8. [8]

      Chao Z, Seino H, Ren J, Hatanaka K, Yoshie N. Macromolecules, 2013, 46(5): 1794 − 1802  doi: 10.1021/ma3023603

    9. [9]

      Chen Y, Kushner A M, Williams G A, Guan Z B. Nat Chem, 2012, 4(6): 467 − 472  doi: 10.1038/nchem.1314

    10. [10]

      Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Nature, 2008, 451(7181): 977 − 980  doi: 10.1038/nature06669

    11. [11]

      Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932 − 937  doi: 10.1038/nmat3713

    12. [12]

      Phadkea A, Zhang C, Armanb B, Hsuc C C, Mashelkard R A, Leled A K, Tauberc M J, Aryab G, Varghesea S. Proc Natl Acad Sci, 2012, 109(12): 4383 − 4388

    13. [13]

      van Gemert G M L, Peeters J W, Söntjens S H M, Janssen H M, Bosman A W. Macromol Chem Phys, 2012, 213(2): 234 − 242  doi: 10.1002/macp.201100559

    14. [14]

    15. [15]

      Wang Z H, Ying Y, Burtovyy R, Luzinov I, Urban M W. J Mater Chem A, 2014, 2(37): 15527 − 15534  doi: 10.1039/C4TA02417F

    16. [16]

      Wang Z H, Urban M W. Polym Chem, 2013, 4(18): 4897 − 4901  doi: 10.1039/C2PY20844J

    17. [17]

      Zhao J, Xu R, Luo G X, Wu J, Xia H S. J Mater Chem B, 2016, 4(5): 982 − 989  doi: 10.1039/C5TB02036K

    18. [18]

      Gaina C, Ursache O, Gaina V. Polym Plast Technol Eng, 2011, 50(7): 712 − 718  doi: 10.1080/03602559.2010.551392

    19. [19]

      Reutenauer P, Buhler E, Boul P J, Candau S J, Lehn J M. Chem Eur J, 2009, 15(8): 1893 − 1900  doi: 10.1002/chem.v15:8

    20. [20]

      Yoshie N, Saito S, Oya N. Polymer, 2011, 52(26): 6074 − 6079  doi: 10.1016/j.polymer.2011.11.007

    21. [21]

      Yu S, Zhang R, Wu Q, Chen T H, Sun P C. Adv Mater, 2013, 25(35): 4912 − 4917  doi: 10.1002/adma.201301513

    22. [22]

      Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K. Adv Mater, 2012, 24(29): 3975 − 3980  doi: 10.1002/adma.v24.29

    23. [23]

      Yang Y L, Lu X, Wang W W. Mater Des, 2017, 127: 30 − 36  doi: 10.1016/j.matdes.2017.04.015

    24. [24]

      Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q. Chem Mater, 2014, 26(6): 2038 − 2046  doi: 10.1021/cm4040616

    25. [25]

      Yoon J A, Kamada J, Koynov K, Mohin J, Nicolay R, Zhang Y Z, Balazs A C, Kowalewski T, Matyjaszewski K. Macromolecules, 2011, 45(1): 142 − 149

    26. [26]

  • 加载中
    1. [1]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    5. [5]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    6. [6]

      Fangqing ZhangYu WangZhenda TanYangbin LiuLijuan SongXiaoming Feng . Catalytic asymmetric inverse-electron-demand Diels–Alder reaction of 2-pyrones with aryl enol ethers. Chinese Chemical Letters, 2025, 36(7): 110581-. doi: 10.1016/j.cclet.2024.110581

    7. [7]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    10. [10]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    11. [11]

      Jiajie GuJiaxiang GuLei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    14. [14]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    15. [15]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    16. [16]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    17. [17]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    18. [18]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    19. [19]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    20. [20]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

Metrics
  • PDF Downloads(0)
  • Abstract views(302)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return