Citation: Xiao-ya Ding, Yu Wang, Gao Li, Chun-sheng Xiao, Xue-si Chen. Iminoboronate Ester Cross-linked Hydrogels with Injectable, Self-healing and Multi-responsive Properties[J]. Acta Polymerica Sinica, ;2019, 50(5): 505-515. doi: 10.11777/j.issn1000-3304.2019.19015 shu

Iminoboronate Ester Cross-linked Hydrogels with Injectable, Self-healing and Multi-responsive Properties

  • Corresponding author: Chun-sheng Xiao, xiaocs@ciac.ac.cn
  • Received Date: 22 January 2019
    Revised Date: 27 February 2019
    Available Online: 4 April 2019

  • Injectable self-healing hydrogels are fancy candidates for biomedical applications, especially in such areas as minimally invasive surgical procedures, interventional therapy, and 3D bio-printing. Herein, a general and robust synthetic route to injectable self-healing hydrogels was developed based on a facile three-component reaction between the primary amine groups in hyperbranched poly(ethylenimine) (PEI), 2-formylphenylboronic acid (2-FPBA), and the cis-diols in sodium alginate (SA). Briefly, 2-FPBA reacted with PEI at first to generate a PEI/2-FPBA conjugate through forming iminoboronate bonds. The residual boronic acid groups in PEI/2-FPBA conjugate further reacted with cis-diols in the sugar unite of SA to generate iminoboronate ester linkages, thereby yielding the target product of hydrogels. The formation of iminoboronate and boronic acid ester bonds in iminoboronate ester linkages was confirmed by 1H- and 11B-NMR spectra. Dynamic rheological measurements revealed that the storage modulus (G′) of hydrogels was dependent on the feeding molar ratios of primary amine groups in PEI, 2-FPBA, and sugar units in SA. Moreover, the resulting hydrogels exhibited excellent self-healing and shear-thinning properties, given that both iminoboronate and boronic acid ester bonds are well known as dynamic covalent bonds. Based on these attributes, the hydrogels prepared were expected to have successful application in 3D printing by serving as a hydrogel " ink”. In addition, their responsiveness towards pH, H2O2, cysteine (Cys), glutathione (GSH), and fructose allowed an accelerated degradation process in acidic medium or in the presence of H2O2, Cys, GSH, or fructose; Scanning electron microscopy (SEM) observation further suggested a significant destruction of their porous structure after a period of degradation. As a result, these hydrogels proved quite applicable for the delivery of protein therapeutics with multi-responsive drug release properties. Their minimal cytotoxicity towards A549, HeLa, and L929 cells was also confirmed by the MTT assay. It is worth mentioning that with 2-FPBA functioning as the cross-linker, many other amine groups-rich polymers, even natural proteins, can be used to fabricate dynamic hydrogels with injectable, seal-healing, and multi-responsive properties. Therefore, hydrogels prepared from the strategy proposed in this study may hold tremendous potentials in tissue engineering, drug delivery, and 3D bio-printing.
  • 加载中
    1. [1]

      Hoffman A S. Adv Drug Delivery Rev, 2002, 54: 3 − 12  doi: 10.1016/S0169-409X(01)00239-3

    2. [2]

      Drury J L, Mooney D J. Biomaterials, 2003, 24: 4337 − 4351  doi: 10.1016/S0142-9612(03)00340-5

    3. [3]

      Peppas N A, Hilt J Z, Khademhosseini A, Langer R. Adv Mater, 2006, 18: 1345 − 1360  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Yu L, Ding J. Chem Soc Rev, 2008, 37: 1473 − 1481  doi: 10.1039/b713009k

    5. [5]

      Duan J J, Zhang L N. Chinese J Polym Sci, 2017, 35: 1165 − 1180  doi: 10.1007/s10118-017-1983-9

    6. [6]

      Wang H, Heilshorn S C. Adv Mater, 2015, 27: 3717 − 3736  doi: 10.1002/adma.v27.25

    7. [7]

      Rosales A M, Anseth K S. Nat Rev Mater, 2016: 1 − 15

    8. [8]

      Rowan S J, Cantrill S J, Cousins, G R L, Sanders J K M, Stoddart J F. Angew Chem Int Ed, 2002, 41: 898 − 952  doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    9. [9]

      Lehn J M. Chem Soc Rev, 2007, 36: 151 − 60  doi: 10.1039/B616752G

    10. [10]

      Jin Y, Yu C, Denman R J, Zhang W. Chem Soc Rev, 2013, 42: 6634 − 54  doi: 10.1039/c3cs60044k

    11. [11]

      Ji S, Xia J, Xu H. ACS Macro Lett, 2015, 5: 78 − 82

    12. [12]

    13. [13]

      Wei Z, Yang J H, Zhou J, Xu F, Zrinyi M, Dussault P H, Osada Y, Chen Y M. Chem Soc Rev, 2014, 43: 8114 − 31  doi: 10.1039/C4CS00219A

    14. [14]

      Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J. Chin Chem Lett, 2017, 28: 1857 − 1874  doi: 10.1016/j.cclet.2017.05.007

    15. [15]

      Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Bone Res, 2017, 5: 17014  doi: 10.1038/boneres.2017.14

    16. [16]

    17. [17]

      Zhang Y, Tao L, Li S, Wei Y. Biomacromolecules, 2011, 12: 2894 − 2901  doi: 10.1021/bm200423f

    18. [18]

      Yang B, Zhang Y, Zhang X, Tao L, Li S, Wei Y. Polym Chem, 2012, 3: 3235 − 3238  doi: 10.1039/c2py20627g

    19. [19]

      Li Y, Wang X, Wei Y, Tao L. Chin Chem Lett, 2017, 28: 2053 − 2057  doi: 10.1016/j.cclet.2017.09.004

    20. [20]

      Zhang Y, Fu C, Li Y, Wang K, Wang X, Wei Y, Tao L. Polym Chem, 2017, 8: 537 − 544  doi: 10.1039/C6PY01704E

    21. [21]

      Qu J, Zhao X, Ma P X, Guo B. Acta Biomater, 2017, 58: 168 − 180  doi: 10.1016/j.actbio.2017.06.001

    22. [22]

      Qu J, Zhao X, Liang Y, Zhang T, Ma P X, Guo B. Biomaterials, 2018, 183: 185 − 199  doi: 10.1016/j.biomaterials.2018.08.044

    23. [23]

      Guo B, Qu J, Zhao X, Zhang M. Acta Biomater, 2019, 84: 180 − 193  doi: 10.1016/j.actbio.2018.12.008

    24. [24]

      Yesilyurt V, Webber M J, Appel E A, Godwin C, Langer R, Anderson D G. Adv Mater, 2016, 28: 86 − 91  doi: 10.1002/adma.201502902

    25. [25]

      Ding X, Li G, Xiao C, Chen X. Macromol Chem Phys, 2019, 220: 1800484  doi: 10.1002/macp.v220.3

    26. [26]

      Cao L, Cao B, Lu C, Wang G, Yu L, Ding J. J Mater Chem B, 2015, 3: 1268 − 1280  doi: 10.1039/C4TB01705F

    27. [27]

      Tseng T C, Tao L, Hsieh F Y, Wei Y, Chiu I M, Hsu S H. Adv Mater, 2015, 27: 3518 − 3524  doi: 10.1002/adma.v27.23

    28. [28]

      Wu X, He C, Wu Y, Chen X. Biomaterials, 2016, 75: 148 − 62  doi: 10.1016/j.biomaterials.2015.10.016

    29. [29]

      Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y. ACS Macro Lett, 2012, 1: 275 − 279  doi: 10.1021/mz200195n

    30. [30]

      Grover G N, Lam J, Nguyen T H, Segura T, Maynard H D. Biomacromolecules, 2012, 13: 3013 − 3017  doi: 10.1021/bm301346e

    31. [31]

      Lou J, Liu F, Lindsay C D, Chaudhuri O, Heilshorn S C, Xia Y. Adv Mater, 2018: 1705215

    32. [32]

      Wei Z, Yang J H, Liu Z Q, Xu F, Zhou J X, Zrínyi M, Osada Y, Chen Y M. Adv Funct Mater, 2015, 25: 1352 − 1359  doi: 10.1002/adfm.v25.9

    33. [33]

      Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A A. Chem Commun, 2010, 46: 1150 − 1152  doi: 10.1039/B916128G

    34. [34]

      Bandyopadhyay A, Gao J. J Am Chem Soc, 2016, 138: 2098 − 2101  doi: 10.1021/jacs.5b12301

    35. [35]

      Li Y, Liu Y, Ma R, Xu Y, Zhang Y, Li B, An Y, S hi, L. ACS Appl Mater Interfaces, 2017, 9: 13056 − 13067  doi: 10.1021/acsami.7b00957

    36. [36]

      Yan B, Huang J, Han L, Gong L, Li L, Israelachvili J N, Zeng H. ACS Nano, 2017, 11: 11074 − 11081  doi: 10.1021/acsnano.7b05109

    37. [37]

      Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Chem Rev, 2016, 116: 1496 − 1539  doi: 10.1021/acs.chemrev.5b00303

    38. [38]

      Wei Q, Xu M, Liao C, Wu Q, Liu M, Zhang Y, Wu C, Cheng L, Wang Q. Chem Sci, 2016, 7: 2748 − 2752  doi: 10.1039/C5SC02234G

    39. [39]

      Cal P M, Vicente J B, Pires E, Coelho A V, Veiros L F, Cordeiro C, Gois P M. J Am Chem Soc, 2016, 2012, 134: 10299 − 10305

    40. [40]

      Cambray S, Gao J. Accounts Chem Res, 2018, 51: 2198 − 2206  doi: 10.1021/acs.accounts.8b00154

    41. [41]

      Pettignano A, Grijalvo S, Haring M, Eritja R, Tanchoux N, Quignard F, Diaz Diaz D. Chem Commun, 2017, 53: 3350 − 3353  doi: 10.1039/C7CC00765E

    42. [42]

  • 加载中
    1. [1]

      Changjie Yin Boyu Wang Dantong Qiao Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    4. [4]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    10. [10]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    11. [11]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    12. [12]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    16. [16]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    17. [17]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    18. [18]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

Metrics
  • PDF Downloads(0)
  • Abstract views(427)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return