Citation: Deng Zhou, Ming Li. Synthesis and Applications of Porous Graphene[J]. Acta Polymerica Sinica, ;2019, 50(7): 671-684. doi: 10.11777/j.issn1000-3304.2019.19014 shu

Synthesis and Applications of Porous Graphene

  • Graphene is an sp2 carbon material having a hexagonal honeycomb lattice in a single-layer two-dimensional (2D) plane due to its excellent properties such as high specific surface area, high electrical conductivity, good thermal stability and excellent mechanical properties. It has already aroused great research interest. Porous graphene refers to a carbon material possessing nano-scale pores in a two-dimensional plane. Due to the introduction of pores, not only the accumulation caused by π-π electron interaction is effectively avoided, but also some properties of the original graphene can be retained for porous graphene with higher specific surface area and pore volume. And also, the band gap of graphene was effectively opened. Therefore, it has great application prospects in the fields of optoelectronic devices, energy storage, gas separation/storage, wastewater separation and photocatalysis. At present, various porous graphene materials (for example, all-carbon porous graphene, doped porous graphene, and porous graphene composite materials, etc.) prepared by chemical synthesis, hydrothermal method, electrochemical reduction method, and template-oriented chemical vapor deposition (CVD) method, have been well applied in various fields. This paper aims to summarize the design and synthesis of various porous graphene materials, and also discusses the characteristics, advantages and disadvantages of porous graphene and various potential applications as well as the comparison of various porous graphene structures and properties. And looking forward to future research, it may focus on developing simpler, more convenient synthesis methods and how to accurately control the size, structure, and distribution density of pores in porous graphene, how to precisely control the type and distribution of doping elements, and how to better couple with other materials to obtain better composite materials, making porous graphene more excellent in various applications.
  • 加载中
    1. [1]

      Allen M J, Tung V C, Kaner R B. Chem Rev, 2010, 110(1): 132 − 145  doi: 10.1021/cr900070d

    2. [2]

      Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Angew Chem Int Ed, 2009, 48(42): 7752 − 7777  doi: 10.1002/anie.v48:42

    3. [3]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666 − 669  doi: 10.1126/science.1102896

    4. [4]

      Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv Mater, 2010, 22(35): 3906 − 3924  doi: 10.1002/adma.201001068

    5. [5]

      Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small, 2011, 7(14): 1876 − 1902  doi: 10.1002/smll.201002009

    6. [6]

      Liu J, Xue Y, Zhang M, Dai L. MRS Bull, 2012, 37(12): 1265 − 1272  doi: 10.1557/mrs.2012.179

    7. [7]

      Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F. Carbon, 2010, 48(6): 1731 − 1737  doi: 10.1016/j.carbon.2010.01.014

    8. [8]

      Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F. Adv Mater, 2010, 22(33): 3723 − 3728  doi: 10.1002/adma.201001029

    9. [9]

      Zhao M Q, Liu X F, Zhang Q, Tian G L, Huang J Q, Zhu W, Wei F. ACS Nano, 2012, 6(12): 10759 − 10769  doi: 10.1021/nn304037d

    10. [10]

      Shao J J, Lv W, Guo Q, Zhang C, Xu Q, Yang Q H, Kang F. Chem Commun, 2012, 48(31): 3706 − 3708  doi: 10.1039/C1CC16838J

    11. [11]

      Zhao M Q, Zhang Q, Huang J Q, Tian G L, Chen T C, Qian W Z, Wei F. Carbon, 2013, 54: 403 − 411  doi: 10.1016/j.carbon.2012.11.055

    12. [12]

      Fan Z J, Yan J, Wei T, Ning G Q, Zhi L J, Liu J C, Cao D X, Wang G L, Wei F. ACS Nano, 2011, 5(4): 2787 − 2794  doi: 10.1021/nn200195k

    13. [13]

      Rakhi R B, Alshareef H N. J Power Sources, 2011, 196(20): 8858 − 8865  doi: 10.1016/j.jpowsour.2011.06.038

    14. [14]

      Rakhi R B, Chen W, Cha D, Alshareef H N. Adv Eng Mater, 2012, 2(3): 381 − 389  doi: 10.1002/aenm.201100609

    15. [15]

      Chen S, Duan J, Tang Y, Zhang Qiao S. Chem Eur J, 2013, 19(22): 7118 − 7124  doi: 10.1002/chem.v19.22

    16. [16]

      Chen S, Duan J, Jaroniec M, Qiao S Z. J Mater Chem A, 2013, 1(33): 9409 − 9413  doi: 10.1039/c3ta00133d

    17. [17]

      Chen X C, Wei W, Lv W, Su F Y, He Y B, Li B, Kang F, Yang Q H. Chem Commun, 2012, 48(47): 5904 − 5906  doi: 10.1039/c2cc32276e

    18. [18]

      Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F. J Power Sources, 2010, 195(9): 3041 − 3045  doi: 10.1016/j.jpowsour.2009.11.028

    19. [19]

      Ning G, Xu C, Mu L, Chen G, Wang G, Gao J, Fan Z, Qian W, Wei F. Chem Commun, 2012, 48(54): 6815 − 6817  doi: 10.1039/c2cc31785k

    20. [20]

      Ning G, Wang H, Zhang X, Xu C, Chen G, Gao J. Particuology, 2013, 11(4): 415 − 420  doi: 10.1016/j.partic.2012.10.006

    21. [21]

      Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F. Carbon, 2013, 60: 558 − 561  doi: 10.1016/j.carbon.2013.04.053

    22. [22]

      Chen Y, Liu Z, Sun L, Lu Z, Zhuo K. J Power Sources, 2018, 390: 215 − 223  doi: 10.1016/j.jpowsour.2018.04.057

    23. [23]

      Liu Y, Liu J, Li Z, Fan X, Li Y, Zhang F, Zhang G, Peng W, Wang S. Int J Hydrogen Energy, 2018, 43(30): 13946 − 13952  doi: 10.1016/j.ijhydene.2018.02.039

    24. [24]

      Jiang L, Fan Z. Nanoscale, 2014, 6(4): 1922 − 1945  doi: 10.1039/C3NR04555B

    25. [25]

      Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Chem Rev, 2018, 118(13): 6337 − 6408  doi: 10.1021/acs.chemrev.7b00689

    26. [26]

      Ramos Ferrer P, Mace A, Thomas S N, Jeon J W. Nano Convergence, 2017, 4(1): 1 − 29  doi: 10.1186/s40580-017-0123-0

    27. [27]

      Fischbein M D, Drndić M. Appl Phys Lett, 2008, 93(11): 113107  doi: 10.1063/1.2980518

    28. [28]

      Bulbula S T, Lu Y, Dong Y, Yang X Y. New J Chem, 2018, 42(8): 5634 − 5655  doi: 10.1039/C8NJ00652K

    29. [29]

      Bieri M, Treier M, Cai J, Ait-Mansour K, Ruffieux P, Groning O, Groning P, Kastler M, Rieger R, Feng X, Mullen K, Fasel R. Chem Commun, 2009, 45: 6919 − 6921

    30. [30]

      Zhou D, Tan X, Wu H, Tian L, Li M. Angew Chem Int Ed, 2018, 58: 1376 − 1381

    31. [31]

      Ning G, Xu C, Hao L, Kazakova O, Fan Z, Wang H, Wang K, Gao J, Qian W, Wei F. Carbon, 2013, 51: 390 − 396  doi: 10.1016/j.carbon.2012.08.072

    32. [32]

      Akhavan O. ACS Nano, 2010, 4(7): 4174 − 4180  doi: 10.1021/nn1007429

    33. [33]

      Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332(6037): 1537  doi: 10.1126/science.1200770

    34. [34]

      Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Chem Rev, 2015, 115(9): 3433 − 3467  doi: 10.1021/cr500519c

    35. [35]

      Dai L, Xue Y, Qu L, Choi H J, Baek J B. Chem Rev, 2015, 115(11): 4823 − 4892  doi: 10.1021/cr5003563

    36. [36]

      Liu M, Zhang R, Chen W. Chem Rev, 2014, 114(10): 5117 − 5160  doi: 10.1021/cr400523y

    37. [37]

      Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2(5): 781 − 794  doi: 10.1021/cs200652y

    38. [38]

      Wang D W, Su D. Energy Environ Sci, 2014, 7(2): 576 − 591  doi: 10.1039/c3ee43463j

    39. [39]

      Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Angew Chem Int Ed, 2011, 50(31): 7132 − 7135  doi: 10.1002/anie.v50.31

    40. [40]

      Poh H L, Šimek P, Sofer Z, Pumera M. ACS Nano, 2013, 7(6): 5262 − 5272  doi: 10.1021/nn401296b

    41. [41]

      Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Angew Chem Int Ed, 2011, 50(14): 3257 − 3261  doi: 10.1002/anie.201006768

    42. [42]

      Hassani S S, Samiee L, Ghasemy E, Rashidi A, Ganjali M R, Tasharrofi S. Int J Hydrogen Energy, 2018, 43(33): 15941 − 15951  doi: 10.1016/j.ijhydene.2018.06.162

    43. [43]

      Li F, Lu L, Gao D, Wang M, Wang D, Xia Z. Talanta, 2018, 185: 528 − 536  doi: 10.1016/j.talanta.2018.04.027

    44. [44]

      Dong F, Cai Y, Liu C, Liu J, Qiao J. Int J Hydrogen Energy, 2018, 43(28): 12661 − 12670  doi: 10.1016/j.ijhydene.2018.04.118

    45. [45]

      Liu J, Zan W, Li K, Yang Y, Bu F, Bao W, Xu Y. J Am Chem Soc, 2017, 139(34): 11666 − 11669  doi: 10.1021/jacs.7b05025

    46. [46]

      Klechikov A G, Mercier G, Merino P, Blanco S, Merino C, Talyzin A V. Microporous Mesoporous Mater, 2015, 210: 46 − 51  doi: 10.1016/j.micromeso.2015.02.017

    47. [47]

      Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R. Carbon, 2010, 48(3): 630 − 635  doi: 10.1016/j.carbon.2009.10.003

    48. [48]

      Huang C C, Pu N W, Wang C A, Huang J C, Sung Y, Ger M D. Sep Purif Technol, 2011, 82: 210 − 215  doi: 10.1016/j.seppur.2011.09.020

    49. [49]

      Liu Y, Zhang Z, Hu R. Ceram Int, 2018, 44(11): 12458 − 12465  doi: 10.1016/j.ceramint.2018.04.036

    50. [50]

      Liu Y, Zhang Z, Wang T. Int J Hydrogen Energy, 2018, 43(24): 11120 − 11131  doi: 10.1016/j.ijhydene.2018.04.202

    51. [51]

      Liu Y, Hu R, Zhang Z. J Porous Mater, 2018, Doi: 10.1007/s10934-018-0653-9

    52. [52]

      Zhang C J, Pan G L, Zhou Y Q, Xu C W. Ionics, 2018, 24(10): 3095 − 3100  doi: 10.1007/s11581-018-2435-4

    53. [53]

      Chakravarty C, Mandal B, Sarkar P. J Phys Chem C, 2018, 122(28): 15835 − 15842  doi: 10.1021/acs.jpcc.8b02634

    54. [54]

      Ye J, Chen Z, Liu Q, Xu C. J Colloid Interface Sci, 2018, 516: 1 − 8  doi: 10.1016/j.jcis.2018.01.045

    55. [55]

      Xu Z, Zhang Y, Wang Y, Zhan L. Appl Surf Sci, 2018, 450: 348 − 355  doi: 10.1016/j.apsusc.2018.04.163

    56. [56]

      Jing Y, Zhou Z, Cabrera C R, Chen Z. J Mater Chem A, 2014, 2(31): 12104 − 12122  doi: 10.1039/C4TA01033G

    57. [57]

      Ren L, Hui K N, Hui K S, Liu Y, Qi X, Zhong J, Du Y, Yang J. Sci Rep, 2015, 5: 14229  doi: 10.1038/srep14229

    58. [58]

      Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao X S. Energy Environ Sci, 2013, 6(5): 1388 − 1414  doi: 10.1039/c3ee23870a

    59. [59]

      Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ Sci, 2011, 4(9): 3243 − 3262  doi: 10.1039/c1ee01598b

    60. [60]

      Cao H, Zhou X, Deng W, Liu Z. J Mater Chem A, 2016, 4(16): 6021 − 6028  doi: 10.1039/C6TA00064A

    61. [61]

      Zhang L S, Jiang L Y, Yan H J, Wang W D, Wang W, Song W G, Guo Y G, Wan L J. J Mater Chem, 2010, 20(26): 5462 − 5467  doi: 10.1039/c0jm00672f

    62. [62]

      Sun D, Yan X, Yang J, Zhang P, Xue Q. Chem Electro Chem, 2015, 2(11): 1830 − 1838

    63. [63]

      Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B. Nanoscale, 2016, 8(37): 16541 − 16588  doi: 10.1039/C6NR04923K

    64. [64]

      Behzadirad M, Lavrova O, Busani T. J Mater Chem. A, 2016, 4(20): 7830 − 7840  doi: 10.1039/C6TA00605A

    65. [65]

      Wei Seh Z, Li W, Cha J J, Zheng G, Yang Y, McDowell M T, Hsu P C, Cui Y. Nat Commun, 2013, 4: 1331  doi: 10.1038/ncomms2327

    66. [66]

      Xu C, Wu Y, Zhao X, Wang X, Du G, Zhang J, Tu J. J Power Sources, 2015, 275: 22 − 25  doi: 10.1016/j.jpowsour.2014.11.007

    67. [67]

      Sun H, Xu G L, Xu Y F, Sun S G, Zhang X, Qiu Y, Yang S. Nano Res, 2012, 5(10): 726 − 738  doi: 10.1007/s12274-012-0257-7

    68. [68]

      Li D, Han F, Wang S, Cheng F, Sun Q, Li W C. ACS Appl Mater Interfaces, 2013, 5(6): 2208 − 2213  doi: 10.1021/am4000535

    69. [69]

      Shin E S, Kim K, Oh S H, Cho W I. Chem Commun, 2013, 49(20): 2004 − 2006  doi: 10.1039/C2CC36986A

    70. [70]

      Li Y, Ye D, Liu W, Shi B, Guo R, Zhao H, Pei H, Xu J, Xie J. ACS Appl Mater Interfaces, 2016, 8(42): 28566 − 28573  doi: 10.1021/acsami.6b04270

    71. [71]

      Huang J Q, Liu X F, Zhang Q, Chen C M, Zhao M Q, Zhang S M, Zhu W, Qian W Z, Wei F. Nano Energy, 2013, 2(2): 314 − 321  doi: 10.1016/j.nanoen.2012.10.003

    72. [72]

      Liu S, Xie K, Chen Z, Li Y, Hong X, Xu J, Zhou L, Yuan J, Zheng C. J Mater Chem A, 2015, 3(21): 11395 − 11402  doi: 10.1039/C5TA00897B

    73. [73]

      You Y, Zeng W, Yin Y X, Zhang J, Yang C P, Zhu Y, Guo Y G. J Mater Chem A, 2015, 3(9): 4799 − 4802  doi: 10.1039/C4TA06142J

    74. [74]

      Walcarius A. Chem Soc Rev, 2013, 42(9): 4098 − 4140  doi: 10.1039/c2cs35322a

    75. [75]

      Nardecchia S, Carriazo D, Ferrer M L, Gutiérrez M C, del Monte F. Chem Soc Rev, 2013, 42(2): 794 − 830  doi: 10.1039/C2CS35353A

    76. [76]

      Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem Soc Rev, 2016, 45(12): 3479 − 3563  doi: 10.1039/C6CS00135A

    77. [77]

      Zhang J G, Wang D, Xu W, Xiao J, Williford R E. J Power Sources, 2010, 195(13): 4332 − 4337  doi: 10.1016/j.jpowsour.2010.01.022

    78. [78]

      Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J. ACS Nano, 2013, 7(4): 3532 − 3539  doi: 10.1021/nn400477d

    79. [79]

      Ma Z, Yuan X, Li L, Ma Z F, Wilkinson D P, Zhang L, Zhang J. Energy Environ Sci, 2015, 8(8): 2144 − 2198  doi: 10.1039/C5EE00838G

    80. [80]

      Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, Ma Z, Li J, Chen Y, Kim Y, Chen L. J Mater Chem A, 2014, 2(20): 7188 − 7196  doi: 10.1039/C4TA00802B

    81. [81]

      Wang Z L, Xu D, Xu J J, Zhang L L, Zhang X B. Adv Funct Mater, 2012, 22(17): 3699 − 3705  doi: 10.1002/adfm.v22.17

    82. [82]

      Li F, Zhang T, Zhou H. Energy Environ Sci, 2013, 6(4): 1125 − 1141  doi: 10.1039/c3ee00053b

    83. [83]

      Jeong Y S, Park J B, Jung H G, Kim J, Luo X, Lu J, Curtiss L, Amine K, Sun Y K, Scrosati B, Lee Y. Nano Lett, 2015, 15(7): 4261 − 4268  doi: 10.1021/nl504425h

    84. [84]

      Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff R S, Stevenson K J, Goodenough J B. J Electrochem Soc, 2011, 158(12): A1379  doi: 10.1149/2.068112jes

    85. [85]

      Xiao J, Zhang J M, Li X L, Shao Y Y, Zhang J G. Nanotechnology, 2013, 24(42): 424004  doi: 10.1088/0957-4484/24/42/424004

    86. [86]

      Cui H, Zhou Z, Jia D. Mater Horizons, 2017, 4(1): 7 − 19  doi: 10.1039/C6MH00358C

    87. [87]

      Li J, Zhang Y, Zhou W, Nie H, Zhang H. J Power Sources, 2014, 262: 29 − 35  doi: 10.1016/j.jpowsour.2014.03.117

    88. [88]

      Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L. Chem Soc Rev, 2017, 46(2): 481 − 558  doi: 10.1039/C6CS00829A

    89. [89]

      Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang J G. Nano Lett, 2011, 11(11): 5071 − 5078  doi: 10.1021/nl203332e

    90. [90]

      Yang W, Ni M, Ren X, Tian Y, Li N, Su Y, Zhang X. Curr Opin Colloid Interface Sci, 2015, 20(5): 416 − 428

    91. [91]

      Tan Y B, Lee J M. J Mater Chem A, 2013, 1(47): 14814 − 14843  doi: 10.1039/c3ta12193c

    92. [92]

      Wang Q, Yan J, Fan Z. Energy Environ Sci, 2016, 9(3): 729 − 762  doi: 10.1039/C5EE03109E

    93. [93]

      You B, Jiang J, Fan S. ACS Appl Mater Interfaces, 2014, 6(17): 15302 − 15308  doi: 10.1021/am503783t

    94. [94]

      Tong X, Zhuo H, Wang S, Zhong L, Hu Y, Peng X, Zhou W, Sun R. RSC Adv, 2016, 6(41): 34261 − 34270  doi: 10.1039/C6RA01565D

    95. [95]

      Tian W, Gao Q, Tan Y, Yang K, Zhu L, Yang C, Zhang H. J Mater Chem A, 2015, 3(10): 5656 − 5664  doi: 10.1039/C4TA06620K

    96. [96]

      Gao Y P, Zhai Z-B, Huang K J, Zhang Y Y. New J Chem, 2017, 41(20): 11456 − 11470  doi: 10.1039/C7NJ02580G

    97. [97]

      Yu S, Liu Y-D, Li Y, Lin Y, Shen J, Zhang L, Li X M, He T. Mater Chem Phys, 2016, 177: 171 − 178  doi: 10.1016/j.matchemphys.2016.04.014

    98. [98]

      Chang B, Zhang S, Sun L, Yin H, Yang B. RSC Adv, 2016, 6(75): 71360 − 71369  doi: 10.1039/C6RA10947K

    99. [99]

      Gu W, Sevilla M, Magasinski A, Fuertes A B, Yushin G. Energy Environ Sci, 2013, 6(8): 2465 − 2476  doi: 10.1039/c3ee41182f

    100. [100]

      Wu Y P, Fang S, Jiang Y, Holze R. J Power Sources, 2002, 108(1): 245 − 249

    101. [101]

      Romero J, Rodriguez San Miguel D, Ribera A, Mas Ballesté R, Otero T F, Manet I, Licio F, Abellán G, Zamora F, Coronado E. J Mater Chem A, 2017, 5(9): 4343 − 4351  doi: 10.1039/C6TA09296A

    102. [102]

      Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X. J Mater Chem A, 2016, 4(16): 5973 − 5983  doi: 10.1039/C6TA01821A

    103. [103]

      Yu X, Kang Y, Park H S. Carbon, 2016, 101: 49-56

    104. [104]

      Balamurugan J, Thanh T D, Kim N H, Lee J H. J Mater Chem A, 2016, 4(24): 9555 − 9565  doi: 10.1039/C6TA03132C

    105. [105]

      Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energy Environ Sci, 2011, 4(3): 656 − 667  doi: 10.1039/c0ee00627k

    106. [106]

      Gaponik N, Herrmann A K, Eychmüller A. J Phys Chem Lett, 2012, 3(1): 8 − 17  doi: 10.1021/jz201357r

    107. [107]

      Worsley M A, Pauzauskie P J, Olson T Y, Biener J, Satcher J H, Baumann T F. J Am Chem Soc, 2010, 132(40): 14067 − 14069  doi: 10.1021/ja1072299

    108. [108]

      Li Y, Chen J, Huang L, Li C, Hong J D, Shi G. Adv Mater, 2014, 26(28): 4789 − 4793  doi: 10.1002/adma.v26.28

    109. [109]

      Choi W, Azad U P, Choi J P, Lee D. Electroanalysis, 2018, 30(7): 1472 − 1478  doi: 10.1002/elan.v30.7

    110. [110]

      Wu Z S, Yang S, Sun Y, Parvez K, Feng X, Müllen K. J Am Chem Soc, 2012, 134(22): 9082 − 9085  doi: 10.1021/ja3030565

    111. [111]

      Hu J, Li Y, Gao G, Xia S. Sensors, 2017, 17(11): 2594/1 − 2594/16

    112. [112]

      Tabish T A, Memon F A, Gomez D E, Horsell D W, Zhang S. Sci Rep, 2018, 8(1): 1817  doi: 10.1038/s41598-018-19978-8

    113. [113]

      Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A, Passerone D. Small, 2010, 6(20): 2266 − 2271  doi: 10.1002/smll.v6:20

    114. [114]

      Du H, Li J, Zhang J, Su G, Li X, Zhao Y. J Phys Chem C, 2011, 115(47): 23261 − 23266  doi: 10.1021/jp206258u

    115. [115]

      Hankel M, Jiao Y, Du A, Gray S K, Smith S C. J Phys Chem C, 2012, 116(11): 6672 − 6676  doi: 10.1021/jp211930a

    116. [116]

      Hauser A W, Schwerdtfeger P. Phys Chem Chem Phys, 2012, 14(38): 13292 − 13298  doi: 10.1039/c2cp41889d

    117. [117]

      Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J. Nanoscale, 2012, 4(17): 5477 − 5482  doi: 10.1039/c2nr31402a

    118. [118]

      Si C, Zhou G. J Phys Chem C, 2012, 137(18): 184309  doi: 10.1063/1.4766323

    119. [119]

      Jungthawan S, Reunchan P, Limpijumnong S. Carbon, 2013, 54: 359 − 364  doi: 10.1016/j.carbon.2012.11.048

    120. [120]

      Schrier J. Phys Chem Lett, 2010, 1(15): 2284 − 2287  doi: 10.1021/jz100748x

    121. [121]

      Oyama S T, Lee D, Hacarlioglu P, Saraf R F. J Membr Sci, 2004, 244(1): 45 − 53

    122. [122]

      Jiang D, Cooper V R, Dai S. Nano Lett, 2009, 9(12): 4019 − 4024  doi: 10.1021/nl9021946

    123. [123]

      Zarei A, Rashidi A, Saber Tehrani M, Aberoomand Azar P. Int J Environ Sci Technol, 2018, DOI: 10.1007/s13762-018-1670-6

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    4. [4]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    7. [7]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    8. [8]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    9. [9]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    13. [13]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    14. [14]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    15. [15]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    16. [16]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

Metrics
  • PDF Downloads(0)
  • Abstract views(271)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return