Citation: Jian-xu Zhang, Ting-ting Sun, Zhi-gang Xie. Dye-protein Hybrid Nanoparticles for Photothermal Therapy of Tumor Cells[J]. Acta Polymerica Sinica, ;2019, 50(6): 633-641. doi: 10.11777/j.issn1000-3304.2019.19001 shu

Dye-protein Hybrid Nanoparticles for Photothermal Therapy of Tumor Cells

  • Corresponding author: Ting-ting Sun, suntt@ciac.ac.cn Zhi-gang Xie, xiez@ciac.ac.cn
  • Received Date: 3 January 2019
    Revised Date: 12 February 2019
    Available Online: 28 March 2019

  • To make up for the inherent drawbacks (e.g. hydrophobicity, toxicity, and instability) of near-infrared Cypate dyes, as photothermal agents, stable hybrid nanoparticles (CBNPs) with small size were prepared from bovine serum albumin (BSA) and Cypate dyes under hydrothermal conditions. Free Cypate exhibited strong fluorescence whereas fluorescence quenching in CBNPs caused a sharp decrease in emission peak intensity, so the dye molecules were successfully assembled into protein nanoparticles. As-prepared CBNPs were characterized with dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of CBNPs was around 25 – 40 nm with a low polydispersity index of 0.2, slightly higher than the measured values from TEM observation. BSA encapsulation could significantly improve the water solubility of Cypate dye and the stability of dye aqueous solutions. Besides, these nanoparticles showed good colloidal stability and biocompatibility. Photothermal experiments suggested that the protein nanoparticles had good photothermal performance and were able to generate enough heat under near-infrared laser irradiation. The photothermal conversion efficiency (η) of CBNPs under 808 nm laser irradiation reached up to 50%, which made them outperform the small molecules of neat Cypate dyes in terms of their photothermal conversion capabilities. Confocal laser scanning microscopy further revealed that the protein nanoparticles could be efficiently internalized by cancer cells in a time-dependent manner, which is very important for their therapeutic functions. Photothermal treatment toward human cervical carcinoma (HeLa) cells and human liver hepatocellular carcinoma (HepG2) cells under laser irradiation was extamined by MTT method, in which the protein nanoparticles showed an effective inhibition effect on tumor cell proliferation at the cellular level. Live/dead cell staining experiments conducted on HeLa cells also showed the same results intuitively. The dye-protein hybrid nanoparticles developed in this study as a novel nano-agent possess promising prospects in the field of tumor photothermal therapy.
  • 加载中
    1. [1]

      Koo Y E, Reddy G R, Bhojani M, Schneider R, Philbert M A, Rehemtulla A, Ross B D, Kopelman R. Adv Drug Delivery Rev, 2006, 58: 1556 − 1577  doi: 10.1016/j.addr.2006.09.012

    2. [2]

      Abadeer N S, Murphy C J. J Phys Chem C, 2016, 120: 1171 − 1176

    3. [3]

    4. [4]

      Li S, Chen Y, Liu H, Wang Y, Liu L, Lv F, Li Y, Wang S. Chem Mater, 2017, 29: 6087 − 6094  doi: 10.1021/acs.chemmater.7b01965

    5. [5]

      Li Y, Liu Z, Hou Y, Yang G, Fei X, Zhao H, Guo Y, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z. ACS Appl Mater Interfaces, 2017, 9: 25098 − 25106  doi: 10.1021/acsami.7b05824

    6. [6]

      Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. Adv Mater, 2016, 28: 3669 − 3676  doi: 10.1002/adma.201600284

    7. [7]

      Han H S, Choi K Y, Lee H, Lee M, An J Y, Shin S, Kwon S, Lee D S, Park J H. ACS Nano, 2016, 10: 10858 − 10868  doi: 10.1021/acsnano.6b05113

    8. [8]

    9. [9]

      Yang J, Yao M H, Jin R M, Zhao D H, Zhao Y D, Liu B. ACS Biomater Sci Eng, 2017, 3: 2391 − 2398  doi: 10.1021/acsbiomaterials.7b00359

    10. [10]

      Luo S, Zhang E, Su Y, Cheng T, Shi C. Biomaterials, 2011, 32: 7127 − 7138  doi: 10.1016/j.biomaterials.2011.06.024

    11. [11]

      Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. J Pharm Sci, 2013, 102: 6 − 28  doi: 10.1002/jps.23356

    12. [12]

      Peng C L, Shih Y H, Lee P C, Hsieh T M H, Luo T Y, Shieh M J. ACS Nano, 2011, 5: 5594 − 5607  doi: 10.1021/nn201100m

    13. [13]

      Tan X, Luo S, Wang D, Su Y, Cheng T, Shi C. Biomaterials, 2012, 33: 2230 − 2239  doi: 10.1016/j.biomaterials.2011.11.081

    14. [14]

      Yue C, Liu P, Zheng M, Zhao P, Wang Y, Ma Y, Cai L. Biomaterials, 2013, 34: 6853 − 6861  doi: 10.1016/j.biomaterials.2013.05.071

    15. [15]

      Lin W, Li Y, Zhang W, Liu S, Xie Z, Jing X. ACS Appl Mater Interfaces, 2016, 8: 24426 − 24432  doi: 10.1021/acsami.6b07103

    16. [16]

      Céspedes M V, Unzueta U, Tatkiewicz W, Sánchez-Chardi A, Conchillo-Solé O, Álamo P, Xu Z, Casanova I, Corchero J L, Pesarrodona M, Cedano J, Daura X, Ratera I, Veciana J, Ferrer-Miralles N, Vazquez E, Villaverde A, Mangues R. ACS Nano, 2014, 8: 4166 − 4176  doi: 10.1021/nn4055732

    17. [17]

      Kratz F. J Controll Release, 2008, 132: 171 − 183  doi: 10.1016/j.jconrel.2008.05.010

    18. [18]

      Chen Q, Liu Z. Adv Mater, 2016, 28: 10557 − 10566  doi: 10.1002/adma.v28.47

    19. [19]

      Gause K T, Yan Y, Cui J, O’Brien-Simpson N M, Lenzo J C, Reynolds E C, Caruso F. ACS Nano, 2015, 9: 2433 − 2444  doi: 10.1021/acsnano.5b00393

    20. [20]

      Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z. ACS Nano, 2015, 9: 5223 − 5233  doi: 10.1021/acsnano.5b00640

    21. [21]

      Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y, Chen H. Adv Mater, 2015, 27: 3874 − 3882  doi: 10.1002/adma.201500229

    22. [22]

      Jiang C, Cheng H, Yuan A, Tang X, Wu J, Hu Y. Acta Biomater, 2015, 14: 61 − 69  doi: 10.1016/j.actbio.2014.11.041

    23. [23]

      Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, Tang Y, Yang X, Chen C, Zhao Y, Chen H. Adv Mater, 2016, 28: 5923 − 5930  doi: 10.1002/adma.201506119

    24. [24]

      Wang X, Zhang J, Wang Y, Liu Y, Li Z, Xie Z, Chen Z. Adv Funct Mater, 2017, 27: 1702051  doi: 10.1002/adfm.v27.43

    25. [25]

      Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv Mater, 2013, 25: 1353 − 1359  doi: 10.1002/adma.v25.9

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    8. [8]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    13. [13]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    14. [14]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    15. [15]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    18. [18]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    19. [19]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(0)
  • Abstract views(207)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return