Citation: Yi Wang, Zhan-bin Feng, Hong-li Zuo, Bing Yu, Nan-ying Ning, Ming Tian, Li-qun Zhang. Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction[J]. Acta Polymerica Sinica, ;2019, 50(5): 485-495. doi: 10.11777/j.issn1000-3304.2019.18280 shu

Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction

  • An emerging and crucial type of high-value-added functional materials, conductive elastomer composites (CEC) have found extensive applications in the fields of military and civil electromagnetic shielding/protection by virtue of their excellent electromagnetic shielding function and environmental sealing performance. However, practical uses of CEC materials can be largely compromised by such disadvantages as difficult rubber recovery, poor interfacial adhesion, and costly conductive fillers. In this study, methyl vinyl silicone rubber (SiR) with high vinyl content (20%, 30% and 50%) was firstly synthesized through an anionic ring-opening reaction, and as-prepared SiR was grafted with furan functional groups via the thiol-ene click chemical reaction to afford furan-grafted SiR (SiR-Fu). SiR-Fu/CNTs composites were then prepared by solution blending of SiR-Fu and carbon nanotubes (CNTs), during which Diels-Alder reaction occurred with SiR-Fu as the diene and CNTs as the dienophiles, giving rise to reversible covalent cross-linking networks throughout the resulting composites. SEM images showed that diameters of most CNTs in SiR-Fu/5wt% CNTs and SiR-Fu/10wt% CNTs composites were significantly larger than those of the raw CNTs due to a SiR layer coated on the nanotube surface, indication of the DA reaction between CNTs and SiR-Fu. However, CNTs tended to agglomerate when being further increased to 20 wt% and some of them showed little change in diameter as compared with the initial values, so that no DA reaction took place in that case. In addition, the gel content of SiR-Fu/5wt% CNTs and SiR-Fu/10wt% CNTs composites was 73% and 90%, respectively, suggesting an enhanced degree of DA reaction at increasing CNTs content within a certain range, while it decreased to 24.5% at 20 wt% CNTs addition for the reduced degree of DA reaction caused by CNTs agglomeration. Therefore, composites with 5 wt% and 10 wt% CNTs showed better interfacial adhesion, higher mechanical strength, greater electrical conductivity, and favorable thermal reversibility. Particularly, the electrical conductivity and tensile strength of SiR-Fu/10wt% CNTs composite reached 0.9 S/cm and 2.3 MPa, respectively, much improved than those of the neat SiR (2.5 × 10−14 S/cm and 0.2 MPa). Moreover, the initial tensile strength, elongation at break, and electrical conductivity could be retained at 77%, 88%, and 86%, respectively, after composite reprocessing.
  • 加载中
    1. [1]

      Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G. Adv Mater, 2013, 25(4): 578 − 583  doi: 10.1002/adma.201202728

    2. [2]

      Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv Mater, 2014, 26(21): 3451 − 3458  doi: 10.1002/adma.v26.21

    3. [3]

      Polgar L M, van Duin M, Broekhuis A A, Picchioni F. Macromolecules, 2015, 48(19): 7096 − 7105  doi: 10.1021/acs.macromol.5b01422

    4. [4]

      Polgar L, Hagting E, Koek W J, Picchioni F, van Duin M. Polymers, 2017, 9(3): 81

    5. [5]

      Zhang H, Cai C, Liu W, Li D D, Zhang J W, Zhao N, Xu J. Sci Rep, 2017, 7(1): 11833  doi: 10.1038/s41598-017-11485-6

    6. [6]

      Zhang B L, Zhang P, Zhang H Z, Y an, Casey Y, Zheng Z J, Wu B, Yu, Y. Macromol Rapid Commun, 2017, 38(15): 1700110  doi: 10.1002/marc.v38.15

    7. [7]

      Amamoto Y, Kikuchi M, Masunaga H, Sasaki S, Otsuka H, Takahara A. Macromolecules, 2010, 43(4): 1785 − 1791  doi: 10.1021/ma902413f

    8. [8]

    9. [9]

      Diels O, Alder K. Justus Liebigs Ann Chem, 1928, 460(1): 98 − 122  doi: 10.1002/(ISSN)1099-0690

    10. [10]

      Polgar M L, Hagting E, Raffa P, Mauri M, Simonutti R, Picchioni F, Duin M. Macromolecules, 2017, 50(22): 8955 − 8964  doi: 10.1021/acs.macromol.7b01541

    11. [11]

      Trovatti E, Lacerda T M, Carvalho A J, Gandini A. Adv Mater, 2015, 27(13): 2242 − 2245  doi: 10.1002/adma.201405801

    12. [12]

      Zhao J, Xu R, Luo G X, Wu J, Xia H S. J Mater Chem B, 2016, 4(5): 982 − 989  doi: 10.1039/C5TB02036K

    13. [13]

    14. [14]

      Roy S, Das T, Zhang L, Li Y, Ming Y, Ting S, Hu X, Yue C Y. Polymer, 2015, 58: 153 − 161  doi: 10.1016/j.polymer.2014.12.032

    15. [15]

      Xue S M, Xu Z L, Tang Y J, Ji C H. ACS Appl Mater Interfaces, 2016, 8(29): 19135 − 44  doi: 10.1021/acsami.6b05545

    16. [16]

      Dumitru A, Mamlouk M, Scott K. Electrochi Acta, 2014, 135: 428 − 438  doi: 10.1016/j.electacta.2014.04.123

    17. [17]

      Miller S G, Williams T S, Baker J S, Sola F, Lebron-Colon M, McCorkle L S, Wilmoth N G, Gaier J, Chen M, Meador M A. ACS Appl Mater Interfaces, 2014, 6(9): 6120 − 6126  doi: 10.1021/am4058277

    18. [18]

      Araya-Hermosilla R, Pucci A, Raffa P, Santosa D, Pescarmona P P, Gengler N Y R, Rudolf P, Moreno-Villoslada I, Picchioni F. Polymers, 2018, 10(10): 1076  doi: 10.3390/polym10101076

    19. [19]

      Li Y, Osuna S, Garcia-Borras M, Qi X, Liu S, Houk K N, Lan Y. Chem Eur J, 2016, 22(36): 12819 − 24  doi: 10.1002/chem.v22.36

    20. [20]

      Mata D, Amaral M, Fernandes A J, Colaco B, Gama A, Paiva M C, Gomes P S, Silva R F, Fernandes M H. Nanoscale, 2015, 7(20): 9238 − 9251  doi: 10.1039/C5NR01829C

    21. [21]

      Willocq B, Lemaur V, Garah E M, Ciesielski A, Samori P, Raquez J M, Dubois P, Cornil J. Chem Commun, 2016, 52(48): 7608 − 7611  doi: 10.1039/C6CC01427E

    22. [22]

      Willocq B, Bose R K, Khelifa F, Garcia S J, Dubois P, Raquez J M. J Mater Chem A, 2016, 4(11): 4089 − 4097  doi: 10.1039/C5TA09793B

    23. [23]

      Zhang W, Zhou Z, Li Q, Chen G X. Ind Eng Chem Res, 2014, 53(16): 6699 − 6707  doi: 10.1021/ie404204g

    24. [24]

      Lowe A B. Polym Chem, 2010, 1(1): 17 − 36  doi: 10.1039/B9PY00216B

    25. [25]

      Schenzel A M, Klein C, Rist K, Moszner N, Barner-Kowollik C. Adv Sci, 2016, 3(3): 1500361  doi: 10.1002/advs.201500361

    26. [26]

      Inglis A J, Sinnwell S, Stenzel M H, Barner-Kowollik C. Angew Chem Int Ed, 2009, 48(13): 2411 − 2414  doi: 10.1002/anie.200805993

    27. [27]

      Gacal B, Durmaz H, Tasdelen M A, Hizal G, Tunca U, Yagci Y, Demirel A L. Macromolecules, 2006, 39(16): 5330 − 5336  doi: 10.1021/ma060690c

    28. [28]

      Xiong X Q, Chen Y M. Eur Polym J, 2012, 48(3): 569 − 579  doi: 10.1016/j.eurpolymj.2011.12.010

    29. [29]

      Xiong X Q, Xu Y H. Polym Bull, 2010, 65(5): 455 − 463  doi: 10.1007/s00289-009-0221-1

    30. [30]

      Durmaz H, Colakoglu B, Tunca U, Gurkan H. J Polym Sci, Part A: Polym Chem, 2006, 44(5): 1667 − 1675  doi: 10.1002/pola.21275

    31. [31]

      Yusuke I, Hideaki I, Kensuke N, Yoshiki C. Macromolecules, 2000, 33(12): 4343 − 4346  doi: 10.1021/ma991899b

    32. [32]

      Chen X, Dam M A, Ono K, Ajit M, Hongbin S, Steven R N, Kevin S, Fred W. Science, 2002, 295(5560): 1698 − 1702  doi: 10.1126/science.1065879

    33. [33]

      Chen X X, Fred W, Ajit K M, Shen H B, Steven R N. Macromolecules, 2003, 36(6): 1082 − 1807

    34. [34]

      Michael L S, Dominic V M, David R W, Thomas Z, James R M. Macromolecules, 2007, 40(4): 818 − 823  doi: 10.1021/ma062093w

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    12. [12]

      Changjie Yin Boyu Wang Dantong Qiao Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    17. [17]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    18. [18]

      Fangqing ZhangYu WangZhenda TanYangbin LiuLijuan SongXiaoming Feng . Catalytic asymmetric inverse-electron-demand Diels–Alder reaction of 2-pyrones with aryl enol ethers. Chinese Chemical Letters, 2025, 36(7): 110581-. doi: 10.1016/j.cclet.2024.110581

    19. [19]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(0)
  • Abstract views(282)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return