Citation: Kang-mi Shen, Yue-jun Yao, Hong-hao Zheng, Chang-you Gao. Synthesis and Properties of Biodegradable Unsaturated Polyurethanes with Reductive Responsiveness[J]. Acta Polymerica Sinica, ;2019, 50(6): 623-632. doi: 10.11777/j.issn1000-3304.2019.18275 shu

Synthesis and Properties of Biodegradable Unsaturated Polyurethanes with Reductive Responsiveness

  • Corresponding author: Chang-you Gao, cygao@zju.edu.cn
  • Received Date: 25 December 2018
    Revised Date: 19 January 2019
    Available Online: 28 March 2019

  • A novel type of unsaturated polyurethanes (PPFU-SS) containing disulfide bonds was synthesized by using poly(propylene fumarate) as the soft segment and dimethyl L-cystinate dihydrochloride as the chain extender. In order to improve the mechanical properties, polycaprolactone diol (PCL) was copolymerized as the soft segment as well to obtain the novel unsaturated copolymerized polyurethanes (PPFU-CO-SS). Moreover, unsaturated polyurethane (PPFU-Lys) without disulfide bonds was synthesized and used as the control group. The chemical structures of PPFU-SS, PPFU-Lys, and PPFU-CO-SS were characterized by 1H-NMR, IR, and Raman spectroscopy, revealing that there were many carbon-carbon double bonds and disulfide bonds in PPFU-SS and PPFU-CO-SS. The thermal properties of these three types of PPFU materials were characterized by DSC and TGA, which demonstrated their good thermal stability below 150 °C. The mechanical properties of these PPFUs were analyzed by universal mechanical testing, showing that the tensile strength of PPFU-CO-SS polymer was the highest with a value of 0.8 MPa. Therefore, the copolymerization with PCL has successfully improved the mechanical property of the novel unsaturated polyurethanes. The degradation of reduction-responsive PPFU-SS and PPFU-CO-SS was significantly accelerated in glutathione solution compared with that in phosphate buffered saline, whereas the degradation of PPFU-Lys had no obvious difference in these two types of solutions. Comparatively, PPFU-CO-SS showed a stronger hydrophobicity, water contact angle (93.5°) significantly larger than those of PPFU-SS (73.9°) and PPFU-Lys (74.4°). Culture of smooth muscle cells in vitro demonstrated that none of PPFU-SS, PPFU-Lys, and PPFU-CO-SS had obvious cytotoxicity. The cells cultured on the PPFU-SS and PPFU-Lys surfaces showed faster proliferation rates than those cultured on TCPS, whereas the cell proliferation rate on PPFU-CO-SS was comparable to that on TCPS. In conclusion, these results demonstrated that the reduction-responsive polyurethanes possess good mechanical strength, thermal stability, degradability in response to reductants, low cytotoxicity, and cell coMPatibility, and thus hold great potential in fields of drug delivery, tissue engineering, regenerative medicine, and therapy of diseases. Furthermore, the unsaturated and high active carbon-carbon double bonds can be used to graft desired molecules, enabling the diverse functionalization and thereby applications.
  • 加载中
    1. [1]

      Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686 − 714  doi: 10.1016/j.progpolymsci.2011.10.002

    2. [2]

    3. [3]

      Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P. J Am Chem Soc, 2010, 132(5): 1500 − 1501  doi: 10.1021/ja907838s

    4. [4]

      Overall C M, Kleifeld O. Nat Rev Cancer, 2006, 6(3): 227 − 239  doi: 10.1038/nrc1821

    5. [5]

    6. [6]

      Napoli A, Valentini M, Tirelli N, Müller M, Hubbell J A. Nat Mater, 2004, 3(3): 183 − 189  doi: 10.1038/nmat1081

    7. [7]

      Meng F, Hennink W E, Zhong Z. Biomaterials, 2009, 30(12): 2180 − 2198  doi: 10.1016/j.biomaterials.2009.01.026

    8. [8]

      Lu Y, Aimetti A A, Langer R, Gu Z. Nat Rev Mater, 2016, 2(1): 16075

    9. [9]

      Jeong B, Gutowska A. Trends Biotechnol, 2002, 20(8): 360 − 360

    10. [10]

      Hoffman A S, Stayton P S, Bulmus V, Chen G, Chen J, Cheung C,Chilkoti A, Ding Z, Dong L, Fong R, Lackey C A, Long C J, Miura M, Morris J E, Murthy N, Nabeshima Y, Park T G, Press O W, Shimoboji T, Shoemaker S, Yang H J, Monji N, Nowinski R C, Cole C A, Priest J H, Harris J M, Nakamae K, Nishino T, Miyata T. J Biomed Mater Res, 2000, 52(4): 577 − 586  doi: 10.1002/(ISSN)1097-4636

    11. [11]

      Ratner B D, Hoffman A S, Schoen F J, Lemons J E. MRS Bull, 2006, 31(1): 58 − 60  doi: 10.1557/mrs2006.17

    12. [12]

    13. [13]

      Lelah M D, Cooper S L. Polyurethane in Medicine. Boca Raton: CRC Press, Inc., 1986. 225

    14. [14]

    15. [15]

      Boretos J W, Pierce W S. Science, 1967, 158(3807): 1481 − 1482  doi: 10.1126/science.158.3807.1481

    16. [16]

      Kasper F K, Tanahashi K, Fisher J P, Mikos A G. Nat Protoc, 2009, 4(4): 518  doi: 10.1038/nprot.2009.24

    17. [17]

      Zheng L, Wang Z, Li C, Xiao Y, Zhang D, Guan G, Zhu W. Polymer, 2013, 54(2): 631 − 638  doi: 10.1016/j.polymer.2012.12.011

    18. [18]

      Nair D P, Podgorski M, Chatani S, Gong T, Xi W, Fenoli C R, Bowman C N. Chem Mat, 2013, 26(1): 724 − 744

    19. [19]

      Hoyle C E, Lowe A B, Bowman C N. Chem Soc Rev, 2010, 39(4): 1355 − 1387  doi: 10.1039/b901979k

    20. [20]

      Wu G, Fang Y-Z, Yang S, Lupton J R, Turner N D. J Nutr, 2004, 134(3): 489 − 492  doi: 10.1093/jn/134.3.489

    21. [21]

      Borok Z, Buhl R, Hubbard R C, Holroyd K J, Roum J H, Czerski D B, Crystal R G, Grimes G J, Bokser A D, Cantin A M . Lancet, 1991, 338(8761): 215 − 216  doi: 10.1016/0140-6736(91)90350-X

    22. [22]

      Saito G, Swanson J A, Lee K D. Adv Drug Deliv Rev, 2003, 55(2): 199 − 215  doi: 10.1016/S0169-409X(02)00179-5

    23. [23]

      Lomaestro B M, Malone M. Ann Pharmacother, 1995, 29(12): 1263  doi: 10.1177/106002809502901213

    24. [24]

      Arjinpathana N, Asawanonda P. J Dermatol Treat, 2012, 23(2): 97 − 102  doi: 10.3109/09546631003801619

    25. [25]

      Bardellini E, Bindi P, Borzone S, Caglieris S, Dagnino F, Testa R. Adv Ther, 1992, 9(2): 116 − 122

    26. [26]

      Hu B, Ye C, Gao C. J Appl Polym Sci, 2015, 132(24): 42065

    27. [27]

      Wygant J C, Prill E J, Carter D E, Kucia R R. US patent, C07C67/58, 3360546. 1963-09-16

    28. [28]

      Hu B, Deng J, Zheng H, Yu S, Gao C. Macromol Rapid Commun, 2016, 37(16): 1331 − 1336  doi: 10.1002/marc.v37.16

    29. [29]

      van Wart H E, Lewis A, Scheraga H A, Saeva F D. Proc Natl Acad Sci USA, 1973, 70(9): 2619  doi: 10.1073/pnas.70.9.2619

    30. [30]

      Averous L, Moro L, Dole P, Fringant C. Polymer, 2000, 41(11): 4157 − 4167  doi: 10.1016/S0032-3861(99)00636-9

    31. [31]

    32. [32]

      Arima Y, Iwata H. Biomaterials, 2007, 28(20): 3074 − 3082  doi: 10.1016/j.biomaterials.2007.03.013

    33. [33]

      Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Biomaterials, 2004, 25(14): 2721 − 2730  doi: 10.1016/j.biomaterials.2003.09.069

    34. [34]

      Zhu Y, Gao C, Shen J. Biomaterials, 2002, 23(24): 4889 − 4895  doi: 10.1016/S0142-9612(02)00247-8

  • 加载中
    1. [1]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    2. [2]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    6. [6]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    7. [7]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    11. [11]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    20. [20]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

Metrics
  • PDF Downloads(0)
  • Abstract views(249)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return