Citation: Chun-yan Cui, Xin-yu Chen, Bo Liu, Teng-ling Wu, Chuan-chuan Fan, Wen-guang Liu. A High Strength Instant Adhesive Nano-hybrid Hydrogel as First-aid Bandage[J]. Acta Polymerica Sinica, ;2019, 50(6): 613-622. doi: 10.11777/j.issn1000-3304.2019.18270 shu

A High Strength Instant Adhesive Nano-hybrid Hydrogel as First-aid Bandage

  • Corresponding author: Wen-guang Liu, wgliu@tju.edu.cn
  • Received Date: 18 December 2018
    Revised Date: 24 January 2019
    Available Online: 5 March 2019

  • In this work, a very simple method for preparing a mechanically strong, highly adhesive, and biocompatible hydrogel was reported. The aqueous solution of N-acryloyl-2-aminoacetic acid (ACG) and nano-bioactive glass (BG) was mixed, followed by UV light irradiation to initiate polymerization for preparing the PACG-BG nano-hybrid hydrogels rapidly. The intermolecular hydrogen bonds from PACG chains, coordination between PACG-end carboxyls and metal ions of BG, as well as PACG-BG physical interaction collectively formed multiple physical crosslinks, were contributed to the increased mechanical strengths. The studies of PACG-BG hydrogels demonstrated that tunable mechanical properties, adhesion abilities, and room temperature self-healing ability could be adjusted by changing the contents of ACG and BG. The adhesion strengths of the hydrogels were tested by tension loading in lap-shear mode. The results indicated that at 25 wt% ACG and 6 wt% BG (relative to ACG), the hydrogels could achieve a balance between surface adhesion and cohesion energies; in this case, the maximum instant adhesion strengths toward pig’s skin, ion sheet, and ceramic were measured to be 120, 142, and 125 kPa, respectively, and the adhesion strengths of hydrogels toward pig skin, ion sheet, and ceramics was presumably originated from the enrichment of PACG chains to the substrates facilitated by the BG nanoparticles. This allowed more carboxyl groups on the hydrogel surface to form hydrogen bonds, ionic coordination, and dipole interactions with the adherends, consequently leading to the enhanced adhesion to these materials. Intriguingly, the highest tensile strength of the hydrogel was as high as 0.9 MPa, fracture energy could reach 1500 J m−2, and self-healing efficiency could reach 100% after 12 h at room temperature without manual intervention. The outcomes of in vivo implantation showed that the hydrogel possessed better biocompatibility. In light of its robust adhesion to biological soft tissues, the hydrogel was used for in vitro adhering and mending the animal’s gastric perforation. The results revealed that the hydrogel could adhere firmly to the perforated stomach, thus preventing leakage of gastric fluid. This novel organic-inorganic hybrid hydrogel holds promising potential as a biomedical first-aid bandage.
  • 加载中
    1. [1]

      Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C. J Am Chem Soc, 2013, 135: 7288 − 7295  doi: 10.1021/ja4005283

    2. [2]

      Bu Y Z, Zhang L C, Liu J H, Zhang L H, Li T T, Shen H, Wang X, Yang F, Tang P F, Wu D C. ACS Appl Mater Interfaces, 2016, 8: 12674 − 12683  doi: 10.1021/acsami.6b03235

    3. [3]

      Sun L, Huang Y, Bian Z, Petrosino J, Fan Z, Wang Y, Park K H, Yue T, Schmidt M, Galster S. ACS Appl Mater Interfaces, 2016, 8: 2423 − 2434  doi: 10.1021/acsami.5b11811

    4. [4]

      Jeon E Y, Wang B H, Yang Y J, Kim B J, Choi B H, Jung G Y, Cha H J. Biomaterials, 2015, 67: 11 − 19  doi: 10.1016/j.biomaterials.2015.07.014

    5. [5]

      Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H. Nat Mater, 2016, 15: 407 − 412  doi: 10.1038/nmat4539

    6. [6]

      Sedo J, Poseu J S, Busque F, Molina D R. Adv Mater, 2013, 25: 653 − 658  doi: 10.1002/adma.201202343

    7. [7]

      Walte J H. Integr Comp Biol, 2002, 42: 1172 − 1180  doi: 10.1093/icb/42.6.1172

    8. [8]

      Shin M, Park S G, Oh B C, Kim K, Jo S, Lee M S, Song S, Hong S H, Shin E C, Kim K S, Kang S W, Lee H. Nat Mater, 2017, 3: 147 − 154

    9. [9]

      Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H. Adv Funct Mater, 2017, 27: 1604894  doi: 10.1002/adfm.v27.8

    10. [10]

      Shin J, Lee J S, Lee C, Park H J, Yang K, Jin Y, Ryu J H, Hong K S, Moon S H, Chung H M, Yang H S, Um S H, Oh J W, Kim D I, Lee H, Cho S W. Adv Funct Mater, 2015, 25: 3814 − 3824  doi: 10.1002/adfm.v25.25

    11. [11]

      Zhang H, Bre L, Zhao T Y, Newland B, Costa M D, Wang W X. J Mater Chem B, 2014, 2: 4067 − 4071

    12. [12]

      Bouten J M, Zonjee M, Bender J, Yauw T K, Goor H V, Hoogenboom R. Prog Polym Sci, 2014, 39: 1375 − 1405  doi: 10.1016/j.progpolymsci.2014.02.001

    13. [13]

      Burkett J R, Hight L M, Kenny P, Wilker J J. J Am Chem Soc, 2010, 132: 12531 − 12533  doi: 10.1021/ja104996y

    14. [14]

      Walker G J. Mar Biol, 1972, 52: 429 − 435

    15. [15]

      Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M. Soft Matter, 2014, 10: 2479 − 2502  doi: 10.1039/c3sm52132j

    16. [16]

      Cui C Y, Wu T L, Gao F, Fan C C, Xu Z Y, Wang H B, Liu B, Liu W G. Adv Funct Mater, 2018, 28: 1804925  doi: 10.1002/adfm.201804925

    17. [17]

      Li A, Jia Y F, Sun S T, Yu Y S, Minsky B, Colfen H, Guo X H. ACS Appl Mater Interfaces, 2018, 28: 10471 − 10479

    18. [18]

      Meredith H J, Jenkins C L, Wilker J J. Adv Funct Mater, 2014, 24: 3259 − 3267  doi: 10.1002/adfm.201303536

    19. [19]

      Nicola R, Kamada J, Wassen A V, Matyjaszewski K. Macromolecules, 2010, 43: 4355 − 4361  doi: 10.1021/ma100378r

    20. [20]

      Montarnal D, Capelot M, Tournilhac F, Leibler L. Science, 2011, 334: 965 − 967  doi: 10.1126/science.1212648

    21. [21]

      Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L. Nature, 2014, 505: 382 − 385  doi: 10.1038/nature12806

    22. [22]

      Gao F, Zhang Y Y, Li Y M, Xu B, Cao Z Q, Liu W G. ACS Appl Mater Interfaces, 2016, 8: 8956 − 8966  doi: 10.1021/acsami.6b00912

    23. [23]

    24. [24]

      Han Y J, Bai T, Liu W G. Sci Rep, 2014, 4: 5815 − 5821

    25. [25]

      Zhang Y Y, Li Y M, Liu W G. Adv Funct Mater, 2015, 25: 471 − 480  doi: 10.1002/adfm.201401989

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    12. [12]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    13. [13]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    14. [14]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    15. [15]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    16. [16]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(0)
  • Abstract views(291)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return