Citation: Hong-jun Li, Jing Liu, Jin-zhi Du, Jun Wang. TACMAA Chemistry-based Tumor Extracellular pH-responsive Polymeric Nanomaterials for Drug Delivery[J]. Acta Polymerica Sinica, ;2019, 50(6): 567-574. doi: 10.11777/j.issn1000-3304.2019.18268 shu

TACMAA Chemistry-based Tumor Extracellular pH-responsive Polymeric Nanomaterials for Drug Delivery

  • Over the past decades, nanotechnology has been intensively investigated for application in drug delivery, cancer treatment, and cancer diagnostics. Treatment with cancer nanomedicines have shown many benefits in improving clinical translation potential and drug biodistribution, reducing side effects and improving the life quality of patients, compared with that by small-molecule anticancer therapeutics. However, a series of complex biological barriers, including the blood barriers, tumor microenvironment barriers, intratumor cell barriers considerably prevent a nanomedicine from reaching its targets in a sufficient concentration and thus severely limit its therapeutic benefits. A feasible strategy is to formulate the nanocarriers in response to microenvironment and to tune their properties to adapt to each individual environment for robust and effective delivery. In this review, we systemically summarize the principles of nanoparticle design for overcoming multiple biological barriers in drug delivery, and conclude the ideal properties of nanomedicine and its biological effects in the microenvironment of each stage, such as blood, extracellular region and intratumor cell in drug delivery. This can guide the development of intelligent nanomedicine which can overcome the drug delivery barriers by making subtle response to the changes of physiological signal. In this review, we highlight some typical strategies we developed in recent 10 years, especially the nanocarriers response to the acidic extracellular environment, to improve the delivery efficiency after systemic administration, including surface charge reversal, surface PEG detachment, particle size transition and ligand reactivation. Finally, the opportunities and challenges in tumor responsive nanomedicines are also disscussed.
  • 加载中
    1. [1]

      Shi J, Kantoff P W, Wooster R, Farokhzad O C. Nat Rev Cancer, 2017, 17(1): 20 − 37  doi: 10.1038/nrc.2016.108

    2. [2]

      Tran S, DeGiovanni P J, Piel B, Rai P. Clin Transl Med, 2017, 6(1): 44  doi: 10.1186/s40169-017-0175-0

    3. [3]

      Maeda H. J Control Release, 2012, 164(2): 138 − 144  doi: 10.1016/j.jconrel.2012.04.038

    4. [4]

      Nichols J W, Bae Y H. J Control Release, 2014, 190: 451 − 464  doi: 10.1016/j.jconrel.2014.03.057

    5. [5]

      Caster J M, Patel A N, Zhang T, Wang A. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2017, 9(1): e1416  doi: 10.1002/wnan.1416

    6. [6]

      Min Y Z, Caster J M, Eblan M J, Wang A Z. Chem Rev, 2015, 115(19): 11147 − 11190  doi: 10.1021/acs.chemrev.5b00116

    7. [7]

      Satalkar P, Elger B S, Hunziker P, Shaw D. Nanomedicine: NBM, 2016, 12(4): 893 − 900  doi: 10.1016/j.nano.2015.12.376

    8. [8]

      Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J Control Release, 2015, 200: 138 − 157  doi: 10.1016/j.jconrel.2014.12.030

    9. [9]

      Ernsting M J, Murakami M, Roy A, Li S D. J Control Release, 2013, 172(3): 782 − 794  doi: 10.1016/j.jconrel.2013.09.013

    10. [10]

      Walkey C D, Olsen J B, Guo H, Emili A, Chan W C. J Am Chem Soc, 2012, 134(4): 2139 − 2147  doi: 10.1021/ja2084338

    11. [11]

      Veronese F M, Pasut G. Drug Discov Today, 2005, 10(21): 1451 − 1458  doi: 10.1016/S1359-6446(05)03575-0

    12. [12]

      Xiao K, Li Y, Luo J, Lee J S, Xiao W, Gonik A M, Agarwal R G, Lam K S. Biomaterials, 2011, 32(13): 3435 − 3446  doi: 10.1016/j.biomaterials.2011.01.021

    13. [13]

      Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Nat Nanotechnol, 2011, 6(12): 815 − 823  doi: 10.1038/nnano.2011.166

    14. [14]

      Blanco E, Shen H, Ferrari M. Nat Biotechnol, 2015, 33(9): 941 − 951  doi: 10.1038/nbt.3330

    15. [15]

      Sriraman S K, Aryasomayajula B, Torchilin V P. Tissue Barriers, 2014, 2: e29528  doi: 10.4161/tisb.29528

    16. [16]

      Du J Z, Mao C Q, Yuan Y Y, Yang X Z, Wang J. Biotechnol Adv, 2014, 32(4): 789 − 803  doi: 10.1016/j.biotechadv.2013.08.002

    17. [17]

      Sun Q, Zhou Z, Qiu N, Shen Y. Adv Mater, 2017, 29(14): 1606628  doi: 10.1002/adma.v29.14

    18. [18]

      Meng F, Hennink W E, Zhong Z. Biomaterials, 2009, 30(12): 2180 − 2198  doi: 10.1016/j.biomaterials.2009.01.026

    19. [19]

      Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K. J Am Chem Soc, 2004, 126(8): 2355 − 2361  doi: 10.1021/ja0379666

    20. [20]

      Mo R, Jiang T, DiSanto R, Tai W, Gu Z. Nat Commun, 2014, 5: 3364  doi: 10.1038/ncomms4364

    21. [21]

      Xu P, Van Kirk E A, Zhan Y, Murdoch W J, Radosz M, Shen Y. Angew Chem Int Ed, 2007, 46(26): 4999 − 5002  doi: 10.1002/(ISSN)1521-3773

    22. [22]

      Lee Y, Fukushima S, Bae Y, Hiki S, Ishii T, Kataoka K. J Am Chem Soc, 2007, 129(17): 5362 − 5363  doi: 10.1021/ja071090b

    23. [23]

      Kratz F, Drevs J, Bing G, Stockmar C, Scheuermann K, Lazar P, Unger C. Bioorg Med Chem Lett, 2001, 11(15): 2001 − 2006  doi: 10.1016/S0960-894X(01)00354-7

    24. [24]

      Zhu L, Wang T, Perche F, Taigind A, Torchilin V P. Proc Natl Acad Sci USA, 2013, 110(42): 17047 − 17052  doi: 10.1073/pnas.1304987110

    25. [25]

      Vander Heiden M G, Cantley L C, Thompson C B. Science, 2009, 324(5930): 1029 − 1033  doi: 10.1126/science.1160809

    26. [26]

      Tannock I F, Rotin D. Cancer Res, 1989, 49(16): 4373 − 4384

    27. [27]

      Gillies R J, Raghunand N, Garcia-Martin M L, Gatenby R A. IEEE Eng Med Biol Mag, 2004, 23(5): 57 − 64  doi: 10.1109/MEMB.2004.1360409

    28. [28]

      Du J Z, Li H J, Wang J. Acc Chem Res, 2018, 51(11): 2848 − 2856  doi: 10.1021/acs.accounts.8b00195

    29. [29]

      Lancaster A J K P W. J Chem Soc, Perkin Trans 2, 1972, 0: 1206 − 1214

    30. [30]

      Kang S, Kim Y, Song Y, Choi J U, Park E, Choi W, Park J, Lee Y. Bioorg Med Chem Lett, 2014, 24(10): 2364 − 2367  doi: 10.1016/j.bmcl.2014.03.057

    31. [31]

      Du J Z, Sun T M, Song W J, Wu J, Wang J. Angew Chem Int Ed, 2010, 49(21): 3621 − 3626  doi: 10.1002/anie.200907210

    32. [32]

      Du J Z, Du X J, Mao C Q, Wang J. J Am Chem Soc, 2011, 133(44): 17560 − 17563  doi: 10.1021/ja207150n

    33. [33]

      Wang C, Cheng L, Liu Y M, Wang X J, Ma X X, Deng Z Y, Li Y G, Liu Z. Adv Funct Mater, 2013, 23(24): 3077 − 3086  doi: 10.1002/adfm.v23.24

    34. [34]

      Chen W, Achazi K, Schade B, Haag R. J Control Release, 2015, 205: 15 − 24  doi: 10.1016/j.jconrel.2014.11.012

    35. [35]

      Zhou Q, Hou Y L, Zhang L, Wang J L, Qiao Y B, Guo S Y, Fan L, Yang T H, Zhu L, Wu H. Theranostics, 2017, 7(7): 1806 − 1819  doi: 10.7150/thno.18607

    36. [36]

      Yang X Z, Du J Z, Dou S, Mao C Q, Long H Y, Wang J. ACS Nano, 2012, 6(1): 771 − 781  doi: 10.1021/nn204240b

    37. [37]

      Yang X Z, Du X J, Liu Y, Zhu Y H, Liu Y Z, Li Y P, Wang J. Adv Mater, 2014, 26(6): 931 − 936  doi: 10.1002/adma.v26.6

    38. [38]

      Sun C Y, Liu Y, Du J Z, Cao Z T, Xu C F, Wang J. Angew Chem Int Ed, 2016, 55(3): 1010 − 1014  doi: 10.1002/anie.201509507

    39. [39]

      Sun C Y, Shen S, Xu C F, Li H J, Liu Y, Cao Z T, Yang X Z, Xia J X, Wang J. J Am Chem Soc, 2015, 137(48): 15217 − 15224  doi: 10.1021/jacs.5b09602

    40. [40]

      Li H J, Du J Z, Du X J, Xu C F, Sun C Y, Wang H X, Cao Z T, Yang X Z, Zhu Y H, Nie S M, Wang J. Proc Natl Acad Sci USA, 2016, 113(15): 4164 − 4169  doi: 10.1073/pnas.1522080113

    41. [41]

      Li D D, Ma Y C, Du J Z, Tao W, Du X J, Yang X Z, Wang J. Nano Lett, 2017, 17(5): 2871 − 2878  doi: 10.1021/acs.nanolett.6b05396

    42. [42]

      Cheng H, Zhu J Y, Xu X D, Qiu W X, Lei Q, Han K, Cheng Y J, Zhang X Z. ACS Appl Mater Interfaces, 2015, 7(29): 16061 − 16069  doi: 10.1021/acsami.5b04517

    43. [43]

      Li L, Yang Q Q, Zhou Z, Zhong J J, Huang Y. Biomaterials, 2014, 35(19): 5171 − 5187  doi: 10.1016/j.biomaterials.2014.03.027

  • 加载中
    1. [1]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    5. [5]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    6. [6]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    7. [7]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    8. [8]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    9. [9]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    10. [10]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    12. [12]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    13. [13]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    15. [15]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(0)
  • Abstract views(254)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return