Citation: Yi-ming Chen, Yu Qi, Wen-ting Hu, Di Zheng, Bing-ran Yu, Fu-jian Xu. Novel Reduction-responsive Branched Polylysine via Ring-opening Reactions for Gene Delivery[J]. Acta Polymerica Sinica, ;2019, 50(6): 602-612. doi: 10.11777/j.issn1000-3304.2019.18260 shu

Novel Reduction-responsive Branched Polylysine via Ring-opening Reactions for Gene Delivery

  • Gene therapy is widely concerned as an excellent treatment for cancer. One of the most important things in gene therapy is to construct gene delivery systems with good biodegradability, biocompatibility, and gene delivery capability. Biodegradable non-viral gene vectors based on different microenvironments between cancer cells and normal cells have been paid more attention. In this work, the reduction-responsive branched polylysine (SS-HP) with disulfide bonds was synthesized via a one-pot ring-opening reaction. To make a comparison, the branched polylysine without disulfide bonds (CC-HP) was synthesized by the same method. All the SS-HP/pDNA and CC-HP/pDNA complexes with various weight ratios were prepared by mixing polycation-based solution and pDNA solution completely, and stood for 30 min. The particle size and zeta potential of SS-HP/pDNA and CC-HP/pDNA were measured by dynamic light scattering (DLS). The degradability of polyplexes in reductive environment was visualized by agarose gel electrophoresis and atomic force microscopy (AFM). The in vitro transfection efficiencies and cell viability of SS-HP and CC-HP were evaluated in C6 and HepG2 cell lines using luciferase reporter gene, green fluorescence protein gene, and MTT assay. The concentration of reductive glutathione (GSH) is higher in some cancer cells than that in normal cells. SS-HP showed high gene transfection efficiency in vitro due to the breakdown of reduction-responsive disulfide bonds. Moreover, SS-HP exhibited low cytotoxicity due to the good biodegradability of SS-HP and plenty of hydroxy groups induced by ring-opening reactions. KillerRed protein is a red fluorescence protein which could produce reactive oxygen species (ROS) upon the induction of visible light. From in vitro antitumor assays, the plasmid pKillerRed (pKR) delivered by SS-HP was expressed in C6 cells. KillerRed protein expressed in C6 cells could contribute to the cell apoptosis via photodynamic therapy (PDT). This study provides a novel approach for designing the next-generation gene delivery systems.
  • 加载中
    1. [1]

      Fan W, Yung B, Huang P, Chen X. Chem Rev, 2017, 117(22): 13566 − 13638  doi: 10.1021/acs.chemrev.7b00258

    2. [2]

      Mahalingam S M, Kularatne S A, Myers C H, Gagare P, Norshi M, Liu X, Singhal S, Low P S. J Med Chem, 2018, 61(21): 9637 − 9646  doi: 10.1021/acs.jmedchem.8b01115

    3. [3]

      Chen J, Tian H, Dong X, Guo Z, Jiao Z, Li F, Kano A, Maruyama A, Chen X. Macromol Biosci, 2013, 13(10): 1438 − 1446  doi: 10.1002/mabi.201300211

    4. [4]

      Guan X, Li Y, Jiao Z, Lin L, Chen J, Guo Z, Tian H, Chen X. ACS Appl Mater Interfaces, 2015, 7(5): 3207 − 3215  doi: 10.1021/am5078123

    5. [5]

    6. [6]

      Wang Y, Xiao H, Fang J, Yu X, Su Z, Cheng D, Shuai X. Chem Commun, 2016, 52(6): 1194 − 1197  doi: 10.1039/C5CC09181K

    7. [7]

      Liu X, Xiang J J, Zhu D C, Jiang L M, Zhou Z X, Tang J B, Liu X R, Huang Y Z, Shen Y Q. Adv Mater, 2016, 28(9): 1743 − 1752  doi: 10.1002/adma.201504288

    8. [8]

      Putnam D. Nat Mater, 2006, 5(6): 439 − 451  doi: 10.1038/nmat1645

    9. [9]

    10. [10]

      Kim H, Kim W J. Small, 2014, 10(1): 117 − 126  doi: 10.1002/smll.201202636

    11. [11]

      Yamano S, Dai J, Hanatani S, Haku K, Yamanaka T, Ishioka M, Takayama T, Yuvienco C, Khapli S, Moursi A M, Montclare J K. Biomaterials, 2014, 35(5): 1705 − 1715  doi: 10.1016/j.biomaterials.2013.11.012

    12. [12]

      Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J, Pu P, Yuan X, Ren Y, Kang C. Biomaterials, 2014, 35(7): 2322 − 2335  doi: 10.1016/j.biomaterials.2013.11.039

    13. [13]

      Li Y, Bing X, Tao B, Liu W. Biomaterials, 2015, 55: 12 − 23  doi: 10.1016/j.biomaterials.2015.03.034

    14. [14]

      Ma D, Lin Q M, Zhang L M, Liang Y Y, Xue W. Biomaterials, 2014, 35(14): 4357 − 4367  doi: 10.1016/j.biomaterials.2014.01.070

    15. [15]

    16. [16]

      Wang D, Zhao T, Zhu X, Yan D, Wang W. Chem Soc Rev, 2015, 44(12): 4023 − 4071  doi: 10.1039/C4CS00229F

    17. [17]

      Jin H, Huang W, Zhu X, Zhou Y, Yan D. Chem Soc Rev, 2012, 41(18): 5986 − 5997  doi: 10.1039/c2cs35130g

    18. [18]

      Huang Y, Wang D, Zhu X, Yan D, Chen R. Polym Chem, 2015, 6(15): 2794 − 2812  doi: 10.1039/C5PY00144G

    19. [19]

      Wang K, Peng H, Thurecht K J, Puttick S, Whittaker A K. Polym Chem, 2016, 7(5): 1059 − 1069  doi: 10.1039/C5PY01707F

    20. [20]

      Huang Y, Ding X, Qi Y, Yu B, Xu F J. Biomaterials, 2016, 106: 134 − 143  doi: 10.1016/j.biomaterials.2016.08.025

    21. [21]

      Fletcher N L, Houston Z H, Simpson J D, Veedu R N, Thurecht K J. Chem Commun, 2018, 54(82): 11538 − 11541  doi: 10.1039/C8CC05831H

    22. [22]

      Zhang C, Moonshi S S, Wang W, Ta H T, Han Y, Han F Y, Peng H, Kral P, Rolfe B E, Gooding J J, Gaus K, Whittaker A K. ACS Nano, 2018, 12(9): 9162 − 9176  doi: 10.1021/acsnano.8b03726

    23. [23]

      Zhang S, Liu Y, Derakhshanfar S, He W, Huang Q, Dong S, Rao J, Luo G X, Zhong W, Liao W, Shi M, Xing M. Adv Healthc Mater, 2018: 1800118

    24. [24]

      Xu H, Cao W, Zhang X. Acc Chem Res, 2013, 46(7): 1647 − 1658  doi: 10.1021/ar4000339

    25. [25]

    26. [26]

      Liu H, Wang H, Yang W, Cheng Y. J Am Chem Soc, 2012, 134: 17680 − 17687  doi: 10.1021/ja307290j

    27. [27]

      Duan S, Yu B, Gao C, Yuan W, Ma J, Xu F J. ACS Appl Mater Interfaces, 2016, 8(43): 29334 − 29342  doi: 10.1021/acsami.6b11029

    28. [28]

      Qi Y, Song H, Xiao H, Cheng G, Yu B, Xu F J. Small, 2018, 14(42): 1803061  doi: 10.1002/smll.v14.42

    29. [29]

      Liao Z, Li Y, Lu H, Sung H. Biomaterials, 2014, 35(1): 500 − 508  doi: 10.1016/j.biomaterials.2013.09.075

    30. [30]

      Tseng S, Liao Z, Kao S, Zeng Y, Huang K, Li H, Yang C, Deng Y, Huang C, Yang S, Yang P, Kempson I. Nat Commun, 2015, 6: 6456  doi: 10.1038/ncomms7456

    31. [31]

      Ping Y, Liu C D, Tang G P, Li J S, Li J, Yang W T, Xu F J. Adv Funct Mater, 2010, 20(18): 3106 − 3116  doi: 10.1002/adfm.201000177

  • 加载中
    1. [1]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    2. [2]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    3. [3]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    11. [11]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    12. [12]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    17. [17]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    20. [20]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(242)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return