Citation: Shuang-bin Fu, Yu-sheng Qin, Li-jun Qiao, Xian-hong Wang, Fo-song Wang. Synthesis of High Primary Hydroxyl Content Poly(carbonate-ether) Polyol[J]. Acta Polymerica Sinica, ;2019, 50(4): 338-343. doi: 10.11777/j.issn1000-3304.2018.18274 shu

Synthesis of High Primary Hydroxyl Content Poly(carbonate-ether) Polyol

  • Corresponding author: Yu-sheng Qin, ysqin@ciac.ac.cn Xian-hong Wang, xhwang@ciac.ac.cn
  • Received Date: 21 December 2018
    Revised Date: 8 January 2019
    Available Online: 24 January 2019

  • During the past decade, poly(carbonate-ether) polyols, also known as CO2-polyols, have been synthesized by the copolymerization of CO2 and propylene oxide (PO) with double metal cyanide (DMC) catalyst in the presence of various chain transfer agents. CO2-polyols show great potential as substitutes for polyols derived from fossil feedstock in the polyurethane industry. However, the ring opening reaction of PO generally occurs at the methylene carbon-oxygen bond due to less steric hindrance producing CO2-polyol mainly with the second hydroxyl (2° OH) as terminal group, therefore, the terminal primary hydroxyl (1° OH) content is usually lower than 20%, which leads to their much lower reactivity with isocyanate. Three methods were chosen for increasing the primary hydroxyl content of CO2-polyols, including ethylene oxide (EO) end-capping, copolymerization end-capping of EO and CO2, and one-pot ternary polymerization (PO, EO and CO2) end-capping. The primary hydroxyl content of the polyols was analysed based on the difference in 19F-NMR chemical shifts between the primary and secondary trifluoroacetyl esters of the polyols. 19F-NMR and 1H-NMR spectroscopy indicated that EO end-capping could improve the 1° OH content of CO2 polyols in some extent, while accompanied with obvious loss of the carbonate unit content. Therefore, the EO end-capping method can only provide polyols with low carbonate unit content. Yet CO2-polyols with 72% of 1° OH content have been synthesized by copolymerization end-capping of EO and CO2, and the content of carbonate unit decreases little. Finally, taking advantage of the different reactivity of PO and EO with double metal cyanide catalysts (DMC), we synthesized CO2-polyols with 62% of 1° OH content by one-pot ternary polymerization of PO, EO and CO2, and the carbonate unit content was almost unaffected. This strategy provides a safe and efficient possibility to synthesize high 1° OH content CO2-polyols.
  • 加载中
    1. [1]

      Ionescu M. Chemistry and Technology of Polyols for Polyurethanes. Shrewsbury: Smithers Rapra Technology Ltd, 2005. 53 – 54

    2. [2]

      Delebecq E, Pascault J P, Boutevin B, Ganachaud F. Chem Rev, 2013, 113: 80 − 118  doi: 10.1021/cr300195n

    3. [3]

      Hu S J, Luo X L, Li Y B. ChemSusChem, 2014, 7: 66 − 72  doi: 10.1002/cssc.v7.1

    4. [4]

      Mahmood N, Yuan Z, Schmidt J, Xu C. Renew Sust Energ Rev, 2016, 60: 317 − 329  doi: 10.1016/j.rser.2016.01.037

    5. [5]

      Petrovic Z S. Polym Rev, 2008, 48: 109 − 155  doi: 10.1080/15583720701834224

    6. [6]

    7. [7]

      Hinz W, Dexheimer E M, Bohres E, Grosch G H. US patent, C08g, 6762278. 2014-07-13

    8. [8]

      Allen S D, Cherian A E, Coates G W, Farmer J J, Gridnev A A, Simoneau C A. US patent, C08g, 8247520. 2013-01-25

    9. [9]

      Cyriac A, Lee S H, Varghese J K, Park J H, Jeon J Y, Kim S J, Lee B Y. Green Chem, 2011, 13: 3469 − 3475  doi: 10.1039/c1gc15722a

    10. [10]

      Gao Y G, Qin Y S, Zhao X J, Wang F S, Wang X H. J Polym Res, 2012, 19: 9878  doi: 10.1007/s10965-012-9878-5

    11. [11]

      Liu S J, Qin Y S, Chen X S, Wang X H, Wang F S. Polym Chem, 2014, 5: 6171 − 6179  doi: 10.1039/C4PY00578C

    12. [12]

      Langanke J, Wolf A, Hofmann J, Boehm K, Subhani M A, Mueller T E, Leitner W, Guertler C. Green Chem, 2014, 16: 1865 − 1870  doi: 10.1039/C3GC41788C

    13. [13]

      Liu S J, Miao Y Y, Qiao L J, Qin Y S, Wang X H, Chen X S, Wang F S. Polym Chem, 2015, 6: 7580 − 7585  doi: 10.1039/C5PY00556F

    14. [14]

      Liu S J, Qin Y S, Qiao L J, Miao Y Y, Wang X H, Wang F S. Polym Chem, 2016, 7: 146 − 152  doi: 10.1039/C5PY01338K

    15. [15]

      Ma K, Bai Q, Zhang L, Liu B Y. RSC Adv, 2016, 6: 48405 − 48410  doi: 10.1039/C6RA07325E

    16. [16]

      Pohl M, Danieli E, Leven M, Leitner W, Bluemich B, Mueller T E. Macromolecules, 2016, 49: 8995 − 9003  doi: 10.1021/acs.macromol.6b01601

    17. [17]

      von der Assen N, Bardow A. Green Chem, 2014, 16: 3272 − 3280  doi: 10.1039/C4GC00513A

    18. [18]

      Wang J, Zhang H M, Miao Y Y, Qiao L J, Wang X H, Wang F S. Polymer, 2016, 100: 219 − 226  doi: 10.1016/j.polymer.2016.08.039

    19. [19]

      Wang J, Zhang H M, Miao Y Y, Qiao L J, Wang X H, Wang F S. Green Chem, 2016, 18: 524 − 530  doi: 10.1039/C5GC01373A

    20. [20]

    21. [21]

    22. [22]

      Hanna J G, Siggia S. J Polym Sci, 1962, 56: 297 − 304  doi: 10.1002/pol.1962.1205616402

    23. [23]

      Miyajima T, Nishiyama K, Satake M, Tsuji T. Polym J, 2015, 47: 771 − 778  doi: 10.1038/pj.2015.64

    24. [24]

      Fu S B, Qin Y S, Qiao L J, Wang X H, Wang F S. Polymer, 2018, 153: 167 − 172  doi: 10.1016/j.polymer.2018.08.014

    25. [25]

      Li Z F, Qin Y S, Zhao X J, Wang F S, Zhang S B, Wang X H. Eur Polym J, 2011, 47: 2152 − 2157  doi: 10.1016/j.eurpolymj.2011.08.004

    26. [26]

      Gao Y G, Gu L, Qin Y S, Wang X H, Wang F S. J Polym Sci, 2012, 50: 5177 − 5184  doi: 10.1002/pola.26366

    27. [27]

      Boiko V P, Grishchenko V K. Acta Polymerica, 1985, 36: 459 − 472  doi: 10.1002/actp.1985.010360901

    28. [28]

      Sleevi P, Glass T E, Dorn H C. Anal Chem, 1979, 51: 1931 − 1934  doi: 10.1021/ac50048a009

    29. [29]

      Manatt S L, Lawson D D, Ingham J D, Rapp N S, Hardy J P. Anal Chem, 1966, 38: 1063 − 1065  doi: 10.1021/ac60240a028

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    16. [16]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(0)
  • Abstract views(285)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return