Citation: Yun Yang, Lei Zhao, Shu-meng Wang, Jun-qiao Ding, Li-xiang Wang. Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain[J]. Acta Polymerica Sinica, ;2019, 50(7): 685-694. doi: 10.11777/j.issn1000-3304.2018.18266 shu

Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain

  • A series of red-emitting thermally activated delayed fluorescence (TADF) polymers based on poly(2,7-carbazole-co-3,3′ -dimethyldiphenyl ether) (PCzDMPE) main chains, including PCzDMPE-R03, PCzDMPE-R05, PCzDMPE-R07, and PCzDMPE-R10, have been designed and synthesized via Suzuki polycondensation. The thermally stable polymers possessed glass transition temperatures above 90 °C and decomposition temperatures above 410 °C, which is beneficial to the devices of long-term services. As the content of red TADF unit increased, the maximum emission was gradually red-shifted from 577 nm (PCzDMPE-R03) to 584 nm (PCzDMPE-R010), while the film photoluminescence quantum yield (PLQY) dropped correspondingly from 0.47 to 0.21 according to the energy gap law. Meanwhile, they all exhibited an obviously delayed fluorescence with the lifetime of 145 – 161 μs, accompanied by a prompt fluorescence of 4.5 – 6.5 ns. For instance, the temperature-dependent transient photoluminescence spectra measured for PCzDMPE-R07 sample displayed an enhanced delayed fluorescence upon the temperature rise from 150 K to 300 K, indicative of its TADF nature. More importantly, compared with earlier reports of red TADF polymers based on poly(fluorene-co-3,3′-dimethyl diphenyl ether), fluorene being replaced by carbazole in the present work could increase the highest occupied molecular orbital (HOMO) level and thus favor the hole injection. As a consequence, the turn-on voltage of PCzDMPE-R07 nondoped device was significantly reduced from 9.8 V to 5.2 V. PCzDMPE-R07 also outperformed the other candidates in terms of a maximum current efficiency of 3.35 cd/A and a maximum external quantum efficiency (EQE) of 2.03%. For performance optimization, a doped device was then fabricated by dispersing 20 wt% of PCzDMPE-R07 into the 1,3-bis(9H-carbazol-9-yl)benzene (mCP) matrix as an emitting layer. The corresponding current efficiency and EQE were further improved to 7.36 cd/A and 3.77%, respectively. To sum up, the copolymer containing carbazole and 3,3′-dimethyldiphenyl ether provides a favorable backbone framework for the design and synthesis of TADF polymers that possesses high efficiency and low driving voltage simultaneously.
  • 加载中
    1. [1]

      Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234 − 238  doi: 10.1038/nature11687

    2. [2]

      Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv Mater, 2016, 28: 6976 − 6983  doi: 10.1002/adma.201601675

    3. [3]

      Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C. Nat Commun, 2015, 6: 8476  doi: 10.1038/ncomms9476

    4. [4]

      Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L. Adv Mater, 2018, 30: 1704961  doi: 10.1002/adma.201704961

    5. [5]

      Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv Mater, 2015, 27: 7236 − 7240  doi: 10.1002/adma.201501090

    6. [6]

      Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv Mater, 2016, 28: 4019 − 4024  doi: 10.1002/adma.201505026

    7. [7]

      Shao S Y, Hu J, Wan g X D, Wang L X, Jing X B, Wang F S. J Am Chem Soc, 2017, 139: 17739 − 17742  doi: 10.1021/jacs.7b10257

    8. [8]

      Xie G H, Luo J J, Huang M L, Chen T H, Wu K L, Gong S L, Yang C L. Adv Mater, 2017, 29: 1604223  doi: 10.1002/adma.201604223

    9. [9]

    10. [10]

      Shao S Y, Ding J Q, Ye T L, Xie Z Y, Wang LX, Jing X B, Wang F S. Adv Mater, 2011, 23: 3570 − 3574  doi: 10.1002/adma.201101074

    11. [11]

      Wang Y J, Zhu Y H, Xie G H, Zhan H M, Yang C L, Cheng Y X. J Mater Chem C, 2017, 5: 10715 − 10720  doi: 10.1039/C7TC03769D

    12. [12]

      Ren Z J, Nobuyasu R S, Dias F B, Monkman A P, Yan S K, Bryce M R. Macromolecules, 2016, 49: 5452 − 5460  doi: 10.1021/acs.macromol.6b01216

    13. [13]

      Zeng X, Luo J J, Zhou T, Chen T H, Zhou X, Wu K L, Zou Y, Xie G H, Shao L G, Yang C L. Macromolecules, 2018, 51: 1598 − 1604  doi: 10.1021/acs.macromol.7b02629

    14. [14]

      Yang Y, Zhao L, Wang S M, Ding J Q, Wang L X. Macromolecules, 2018, 51: 9933 − 9942  doi: 10.1021/acs.macromol.8b02050

    15. [15]

      Dijken A V, Bastiaansen J J A M, Kiggen N M M, Langeveld B M W, Rothe C, Monkman A, Bach I, Stössel P, Brunner K. J Am Chem Soc, 2004, 126: 7718 − 7727  doi: 10.1021/ja049771j

    16. [16]

      Garbay G, Muccioli L, Hanifa A, Hadziioannou G, Brochon C, Cloutet E. Polymer, 2017, 119: 274 − 284  doi: 10.1016/j.polymer.2017.05.039

    17. [17]

      Zhang Q S, Kuwabara H, Potscavage W J Jr, Huang S, Hatae Y, Shibata T, Adachi C. J Am Chem Soc, 2014, 136: 18070 − 18081  doi: 10.1021/ja510144h

    18. [18]

      Caspar Jonathan V, Kober E M, Sullivan B P, Meyer T J. J Am Chem Soc, 1982, 104: 632 − 634  doi: 10.1021/ja00366a052

    19. [19]

      Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931 − 7958  doi: 10.1002/adma.v26.47

    20. [20]

      Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv Mater, 2013, 25: 3319 − 3323  doi: 10.1002/adma.v25.24

  • 加载中
    1. [1]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    2. [2]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    3. [3]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    8. [8]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    11. [11]

      Ruoxi RUNJikai ZHULixia HANZhiyin XIAOXiujuan JIANGJing JIN . Red light-induced CO-release from manganese carbonyl complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132

    12. [12]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    13. [13]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    14. [14]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    17. [17]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    18. [18]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    19. [19]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    20. [20]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

Metrics
  • PDF Downloads(0)
  • Abstract views(259)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return