Citation: Yi-dong Zou, Xiao-wei Cheng, Yong-hui Deng. Amphiphilic Block Copolymer Directed Synthesis of Ordered Mesoporous Metal Oxide Semiconductors[J]. Acta Polymerica Sinica, ;2018, 0(11): 1400-1415. doi: 10.11777/j.issn1000-3304.2018.18175 shu

Amphiphilic Block Copolymer Directed Synthesis of Ordered Mesoporous Metal Oxide Semiconductors

  • Corresponding author: Yong-hui Deng, yhdeng@fudan.edu.cn
  • Received Date: 9 August 2018
    Revised Date: 21 August 2018
    Available Online: 6 September 2018

  • Ordered mesoporous materials, a family of highly porous nanomaterials, have attracted extensive attentions of many researchers in various fields due to their stable structure, high specific surface area, adjustable pore size, and easily modifiable pore wall. Over 70% reports on mesoporous materials are about amorphous mesoporous materials (e.g., silica), because the traditional templates are widely commercially available and can be used readily for synthesis of amorphous mesoporous materials. However, conventional soft templates are not favorable for the synthesis of crystalline ordered mesoporous metal oxide semiconductors (OMMSs) with unique physical and chemical properties (i.e., light, electricity, magnetism, catalysis, gas sensitivity, etc). Fortunately, this issue is well tackled by the development of interdisciplinary research along with more involvement of polymer researchers into the field of inorganic porous materials. In recent years, various novel block copolymers, particularly those with high carbon residue, high glass transition temperature, and complex-ability, have been synthesized and applied for fabricating porous materials. Remarkable progress has been achieved in using these templates to direct the co-assembly of various precursors for OMMSs synthesis. Starting from the preparation and assembly of polymer templates, this review elucidates systematically the mechanism and assembly behavior between metal oxide precursor and polymer templates. In addition, in-depth discussion is developed on the common three assembly processes, i.e. the metal inorganic salt-polymer template assembly, the metal cluster compounds-polymer template assembly, and the metal nanocrystals-polymer template assembly. Future opportunities and challenges faced by the synthesis and applications of OMMSs based on these novel block copolymer templates are foreseen in the last section.
  • 加载中
    1. [1]

      Deng Y H, Wei J, Sun Z K, Zhao D Y. Chem Soc Rev, 2013, 42(9): 4054 − 4070  doi: 10.1039/C2CS35426H

    2. [2]

      Zhu C Z, Du D, Eychmuller A, Lin Y H. Chem Rev, 2015, 115(16): 8896 − 8943  doi: 10.1021/acs.chemrev.5b00255

    3. [3]

      Ren Y, Ma Z, Bruce P G. Chem Soc Rev, 2012, 41(14): 4909 − 4927  doi: 10.1039/c2cs35086f

    4. [4]

      Wei J, Sun Z K, Luo W, Li Y H, Elzatahry A A, Al-Enizi A M, Deng Y H, Zhao D Y. J Am Chem Soc, 2017, 139(5): 1706 − 1713  doi: 10.1021/jacs.6b11411

    5. [5]

      Li W, Liu J, Zhao D Y. Nat Rev Mater, 2016, 1(6): 16023 − 16039  doi: 10.1038/natrevmats.2016.23

    6. [6]

      Zhou J W, Whittell G R, Manners I. Macromolecules, 2014, 47(11): 3529 − 3543  doi: 10.1021/ma500106x

    7. [7]

      Schacher F H, Rupar P A, Manners I. Angew Chem Int Ed, 2012, 51(32): 7898 − 7921  doi: 10.1002/anie.v51.32

    8. [8]

      Orilall M C, Wiesner U. Chem Soc Rev, 2011, 40(2): 520 − 535  doi: 10.1039/C0CS00034E

    9. [9]

      Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew Chem Int Ed, 2004, 43(43): 5785 − 5789  doi: 10.1002/(ISSN)1521-3773

    10. [10]

      Fuertes M C, López-Alcaraz F J, Marchi M C, Troiani H E, Luca V, Míguez H, Soler-Illia G J A A. Adv Funct Mater, 2007, 17(8): 1247 − 1254  doi: 10.1002/(ISSN)1616-3028

    11. [11]

      Chen A H, Miyao T, Higashiyama K, Yamashita H, Watanabe M. Angew Chem Int Ed, 2010, 49(51): 9895 − 9898  doi: 10.1002/anie.v49.51

    12. [12]

      Liang C D, Li Z J, Dai S. Angew Chem Int Ed, 2008, 47(20): 3696 − 3717  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Kang E, Jung H, Park J G, Kwon S, Shim J, Sai H, Wiesner U, Kim J K, Lee J. ACS Nano, 2011, 5(2): 1018 − 1025  doi: 10.1021/nn102451y

    14. [14]

      Zhang J Y, Deng Y H, Wei J, Sun Z K, Gu D, Bongard H, Liu C, Wu H H, Tu B, Schüth F, Zhao D Y. Chem Mater, 2009, 21(17): 3996 − 4005  doi: 10.1021/cm901371r

    15. [15]

      Wei J, Wang H, Deng Y, Sun Z K, Shi L, Tu B, Luqman M, Zhao D Y. J Am Chem Soc, 2011, 133(50): 20369 − 20377  doi: 10.1021/ja207525e

    16. [16]

      Wang Z R, Zhu Y H, Luo W, Ren Y, Cheng X W, Xu P C, Li X X, Deng Y H, Zhao D Y. Chem Mater, 2016, 28(21): 7773 − 7780  doi: 10.1021/acs.chemmater.6b03035

    17. [17]

      Buonsanti R, Pick T E, Krins N, Richardson T J, Helms B A, Milliron D J. Nano Lett, 2012, 12(7): 3872 − 3877  doi: 10.1021/nl302206s

    18. [18]

      Zhu Y H, Zhao Y, Ma J H, Cheng X W, Xie J, Xu P C, Liu H Q, Liu H P, Zhang H J, Wu M H, Elzatahry A A, Alghamdi A, Deng Y H, Zhao D Y. J Am Chem Soc, 2017, 139(30): 10365 − 10373  doi: 10.1021/jacs.7b04221

    19. [19]

      Zhou X R, Cheng X W, Zhu Y H, Elzatahry A A, Alghamdi A, Deng Y H, Zhao D Y. Chin Chem Lett, 2017, 29(3): 405 − 416

    20. [20]

      Wei J, Ren Y, Luo W, Sun Z K, Cheng X W, Li Y H, Deng Y H, Elzatahry A A, Al-Dahyan D, Zhao D Y. Chem Mater, 2017, 29(5): 2211 − 2217  doi: 10.1021/acs.chemmater.6b05032

    21. [21]

      Wan Y, Zhao D Y. Chem Rev, 2007, 107(7): 2821 − 2860  doi: 10.1021/cr068020s

    22. [22]

      Suib S L. Chem Rec, 2017, 17(12): 1169 − 1183  doi: 10.1002/tcr.201700025

    23. [23]

      Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Nature, 1998, 369(12): 152 − 155

    24. [24]

      Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Chem Mater, 1999, 11(10): 2813 − 2826  doi: 10.1021/cm990185c

    25. [25]

      Sel O, Sallard S, Brezesinski T, Rathousky J, Dunphy D R, Collord A, Smarsly B M. Adv Funct Mater, 2007, 17(16): 3241 − 3250  doi: 10.1002/(ISSN)1616-3028

    26. [26]

      Dong W Y, Sun Y J, Lee C W, Hua W M, Lu X C, Shi Y F, Zhang S C, Chen J M, Zhao D Y. J Am Chem Soc, 2007, 129(45): 13894 − 13904  doi: 10.1021/ja073804o

    27. [27]

      Shi Y F, Zhang F, Hu Y S, Sun X H, Zhang Y C, Lee H I, Chen L Q, Stucky G D. J Am Chem Soc, 2010, 132(16): 5552 − 5553  doi: 10.1021/ja1001136

    28. [28]

      Shi Y F, Wan Y, Zhao D Y. Chem Soc Rev, 2011, 40(7): 3854 − 3878  doi: 10.1039/c0cs00186d

    29. [29]

      Sun L B, Liu X Q, Zhou H C. Chem Soc Rev, 2015, 44(15): 5092 − 5147  doi: 10.1039/C5CS00090D

    30. [30]

    31. [31]

    32. [32]

      Deng Yonghui(邓勇辉), Zhu Yongheng(朱永恒). Zhangjiang Technology Reviews(张江科技评论), 2018, 1(4): 36 – 39

    33. [33]

      Ren Y, Zhou X, Luo W, Xu P C, Zhu Y H, Li X X, Cheng X W, Deng Y H, Zhao D Y. Chem Mater, 2016, 28(21): 7997 − 8005  doi: 10.1021/acs.chemmater.6b03733

    34. [34]

      Li Y H, Luo W, Qin N, Dong J P, Wei J, Li W, Feng S S, Chen J C, Xu J Q, Elzatahry A A, Es-Saheb M H, Deng Y H, Zhao D Y. Angew Chem Int Ed, 2014, 53(34): 9035 − 9040  doi: 10.1002/anie.201403817

    35. [35]

      Liu Y, Luo Y F, Elzatahry A A, Luo W, Che R C, Fan J W, Lan K, Al-Enizi A M, Sun Z K, Li B, Liu Z W, Shen D K, Ling Y, Wang C, Wang J X, Gao W J, Yao C, Yuan K P, Peng H S, Tang Y, Deng Y H, Zheng G F, Zhou G, Zhao D Y. ACS Cent Sci, 2015, 1(7): 400 − 408  doi: 10.1021/acscentsci.5b00256

    36. [36]

      Zhou W, Li W, Wang J Q, Qu Y, Yang Y, Xie Y, Zhang K F, Wang L, Fu H G, Zhao D Y. J Am Chem Soc, 2014, 136(26): 9280 − 9283  doi: 10.1021/ja504802q

    37. [37]

      Sa Y J, Kwon K J, Cheon J Y, Kleitz F, Joo S H. J Mater Chem A, 2013, 1(34): 9992 − 10001  doi: 10.1039/c3ta11917c

    38. [38]

      Zhou W, Sun F F, Pan K, Tian G H, Jiang B J, Ren Z Y, Tian C G, Fu H G. Adv Funct Mater, 2011, 21(10): 1922 − 1930  doi: 10.1002/adfm.201002535

    39. [39]

      Sinha A K, Suzuki K. Angew Chem Int Ed, 2004, 44(2): 271 − 273

    40. [40]

      Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M. Adv Funct Mater, 2009, 19(4): 653 − 661  doi: 10.1002/adfm.v19:4

    41. [41]

      Gu D, Schuth F. Chem Soc Rev, 2014, 43(1): 313 − 344  doi: 10.1039/C3CS60155B

    42. [42]

      Tian B Z, Liu X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, Zhao D Y. Nat Mater, 2003, 2(3): 159 − 163  doi: 10.1038/nmat838

    43. [43]

      Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C. Nat Mater, 2004, 3(11): 787 − 792  doi: 10.1038/nmat1206

    44. [44]

      Brezesinski T, Fischer A, Iimura K, Sanchez C, Grosso D, Antonietti M, Smarsly B M. Adv Funct Mater, 2006, 16(11): 1433 − 1440  doi: 10.1002/(ISSN)1616-3028

    45. [45]

      Brezesinski T, Groenewolt M, Antonietti M, Smarsly B. Angew Chem Int Ed, 2006, 45(5): 781 − 784  doi: 10.1002/(ISSN)1521-3773

    46. [46]

      Brezesinski T, Groenewolt M, Gibaud A, Pinna N, Antonietti M, Smarsly B M. Adv Mater, 2006, 18(17): 2260 − 2263  doi: 10.1002/(ISSN)1521-4095

    47. [47]

      Brezesinski T, Groenewolt M, Pinna N, Amenitsch H, Antonietti M, Smarsly B M. Adv Mater, 2006, 18(14): 1827 − 1831  doi: 10.1002/(ISSN)1521-4095

    48. [48]

      Brezesinski T, Rohlfing D F, Sallard S, Antonietti M, Smarsly B M. Small, 2006, 2(10): 1203 − 1211  doi: 10.1002/(ISSN)1613-6829

    49. [49]

      Fattakhova-Rohlfing D, Brezesinski T, Rathousky J, Feldhoff A, Oekermann T, Wark M, Smarsly B. Adv Mater, 2006, 18(22): 2980 − 2983  doi: 10.1002/(ISSN)1521-4095

    50. [50]

      Wang T W, Sel O, Djerdj I, Smarsly B. Colloid Polym Sci, 2006, 285(1): 1 − 9  doi: 10.1007/s00396-006-1526-3

    51. [51]

      Brezesinski T, Antonietti M, Smarsly B M. Adv Mater, 2007, 19(8): 1074 − 1078  doi: 10.1002/(ISSN)1521-4095

    52. [52]

      Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissière C, Antonietti M, Sanchez C. Chem Mater, 2004, 16(15): 2948 − 2952  doi: 10.1021/cm0495966

    53. [53]

      Lee J, Orilall M C, Warren S C, Kamperman M, DiSalvo F J, Wiesner U. Nat Mater, 2008, 7(3): 222 − 228  doi: 10.1038/nmat2111

    54. [54]

      Hoheisel T N, Hur K, Wiesner U B. Prog Polym Sci, 2015, 40(1): 3 − 32

    55. [55]

      Kamperman M, Fierke M A, Garcia C B W, Wiesner U. Macromolecules, 2008, 41(22): 8745 − 8752  doi: 10.1021/ma801458w

    56. [56]

      Warren S C, Messina L C, Slaughter L S, Kamperman M, Zhou Q, Gruner S M, Disalvo F J, Wiesner U. Science, 2008, 320(5884): 1748 − 1752  doi: 10.1126/science.1159950

    57. [57]

      Garcia B C, Kamperman M, Ulrich R, Jain A, Gruner S M, Wiesner U. Chem Mater, 2009, 21(22): 5397 − 5405  doi: 10.1021/cm901885c

    58. [58]

      Li Z H, Sai H, Warren S C, Kamperman M, Arora H, Gruner S M, Wiesner U. Chem Mater, 2009, 21(23): 5578 − 5584  doi: 10.1021/cm9020673

    59. [59]

      Xiao X Y, Liu L L, Ma J H, Ren Y, Cheng X W, Zhu Y H, Zhao D Y, Elzatahry A A, Alghamdi A, Deng Y H. ACS Appl Mater Interfaces, 2018, 10(2): 1871 − 1880  doi: 10.1021/acsami.7b18830

    60. [60]

      Zhang J Y, Deng Y H, Gu D, Wang S T, She L, Che R C, Wang Z S, Tu B, Xie S H, Zhao D Y. Adv Energy Mater, 2011, 1(2): 241 − 248  doi: 10.1002/aenm.201000004

    61. [61]

      Luo W, Li Y H, Dong J P, Wei J, Xu J Q, Deng Y H, Zhao D Y. Angew Chem Int Ed, 2013, 52(40): 10505 − 10510  doi: 10.1002/anie.201303353

    62. [62]

      Zhou X R, Zhu Y H, Luo W, Ren Y, Xu P C, Elzatahry A A, Cheng X W, Alghamdi A, Deng Y H, Zhao D Y. J Mater Chem A, 2016, 4(1): 15064 − 15071

    63. [63]

      Lunkenbein T, Rosenthal D, Otremba T, Girgsdies F, Li Z H, Sai H, Bojer C, Auffermann G, Wiesner U, Breu J. Angew Chem Int Ed, 2012, 51(51): 12892 − 12896  doi: 10.1002/anie.201206183

    64. [64]

      Lunkenbein T, Kamperman M, Li Z H, Bojer C, Drechsler M, Forster S, Wiesner U, Muller A H E, Breu J. J Am Chem Soc, 2012, 134(30): 12685 − 12692  doi: 10.1021/ja304073t

    65. [65]

      Chakraborty S, Jin L, Li Y, Liu Y C, Dutta T, Zhu D M, Yan X Z, Keightley A, Peng Z H. Eur J Inorg Chem, 2013, (10-11): 1799 − 1807  doi: 10.1002/ejic.201201127

    66. [66]

      Zhang J, Liu Y, Li Y, Zhao H X, Wan X H. Angew Chem Int Ed, 2012, 51(19): 4598 − 4602  doi: 10.1002/anie.201107481

    67. [67]

      Yin P C, Li D, Liu T B. Chem Soc Rev, 2012, 41(22): 7368 − 7383  doi: 10.1039/c2cs35176e

    68. [68]

      Lin X K, Liu F, Li H L, Yan Y, Bi L H, Bu W F, Wu L X. Chem Commun, 2011, 47(36): 10019 − 10021  doi: 10.1039/c1cc13123k

    69. [69]

      Wang Y L, Wang X L, Zhang X J, Xia N, Liu B, Yang J, Yu W, Hu M B, Yang M, Wang W. Chem Eur J, 2010, 16(42): 12545 − 12548  doi: 10.1002/chem.v16:42

    70. [70]

      Li J H, Kang W L, Yang X, Yu X D, Xu L L, Guo Y H, Fang H B, Zhang S D. Desalination, 2010, 255(1-3): 107 − 116  doi: 10.1016/j.desal.2010.01.007

    71. [71]

      Zhang R F, Yang C. J Mater Chem, 2008, 18(23): 2691 − 2703  doi: 10.1039/b800025e

    72. [72]

      Lunkenbein T, Kamperman M, Schieder M, With S, Li Z H, Sai H, Förster S, Wiesner U, Breu J. J Mater Chem A, 2013, 1(20): 6238 − 6248  doi: 10.1039/c3ta10333a

    73. [73]

      Ong G K, Williams T E, Singh A, Schaible E, Helms B A, Milliron D J. Nano Lett, 2015, 15(12): 8240 − 8244  doi: 10.1021/acs.nanolett.5b03765

    74. [74]

      Liu Q N, Sun Z Q, Dou Y H, Kim J H, Dou S X. J Mater Chem A, 2015, 3(22): 11688 − 11699  doi: 10.1039/C5TA01162K

    75. [75]

      Feckl J M, Dunn H K, Zehetmaier P M, Müller A, Pendlebury S R, Zeller P, Fominykh K, Kondofersky I, Döblinger M, Durrant J R, Scheu C, Peter L, Fattakhova-Rohlfing D, Bein T. Adv Mater Interfaces, 2015, 2(18): 1500358 − 1500365  doi: 10.1002/admi.201500358

    76. [76]

      Ba J H, Polleux J, Antonietti M, Niederberger M. Adv Mater, 2005, 17(20): 2509 − 2512  doi: 10.1002/(ISSN)1521-4095

    77. [77]

      Helms B A, Williams T E, Buonsanti R, Milliron D J. Adv Mater, 2015, 27(38): 5820 − 5829  doi: 10.1002/adma.v27.38

    78. [78]

      Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Nat Mater, 2004, 3(6): 394 − 397  doi: 10.1038/nmat1129

  • 加载中
    1. [1]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    2. [2]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    3. [3]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100021-0. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

Metrics
  • PDF Downloads(0)
  • Abstract views(201)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return