Citation: Yong-jin Ruan, Yu-yuan Lu, Li-jia An. Tube Model[J]. Acta Polymerica Sinica, ;2018, 0(12): 1493-1506. doi: 10.11777/j.issn1000-3304.2018.18172 shu

Tube Model

  • Corresponding author: Yu-yuan Lu, yylu@ciac.ac.cn
  • Received Date: 29 July 2018
    Revised Date: 25 September 2018
    Available Online: 16 October 2018

  • Nonlinear rheology for polymers is the foundational science underlying high efficiency and energy-saving processing of polymeric materials. For chainlike polymers, complicated interchain interactions affect their dynamics and determine the structure-processing-property relationship. This interaction is often called the entanglement, and becomes the key issue in polymer rheology. To our knowledge, the rheological behavior of entangled polymers is based on the de Gennes-Doi-Edwards tube model (DE theory), which reduces the many-chain interaction into a smooth confining tube and assumes the test chain undergoes the Rouse dynamics inside the tube. Some predictions based on the DE theory are in agreement with rheological results, for instance, the time-strain separated form of the reduced relaxation modulus. To overcome some obvious disadvantages and provide reasonable results, many improvements and refinements have also been made to the DE theory. However, the tube model is only an essential single-chain mean-field theory since its intuitive molecular picture is too simple the theory cannot be derived from first principles and lacks self-consistency. In brief, the tube model does not describe how entanglement arises and cannot address the problem of when, how, and why disentanglement occurs after the external deformation. The model is inadequate in describing the chain conformation under fast and large deformations, and fails to explain a number of experimental observations in recent studies, such as the shear banding and the nonquiescent relaxation which show remarkable strain localization phenomena. Therefore, it is necessary to reexamine the single-chain mean-field assumptions and to consider the many-chain interactions explicitly. In other words, the chain entanglement may involve active localized intermolecular interactions that should be preceived as network junctions, and the critical picture of barrier-free Rouse retraction is questionable. In this article, we provide a general introduction to the original tube model and its subsequent improvements, with an emphasis on the development, basic assumptions, and key concepts. We provide derivation of some key results and explain the physical meaning of the parameters. The article ends with an outlook of the challenges and opportunities in the theory for polymer rheology, hoping to motivate researchers to working on this field.
  • 加载中
    1. [1]

      Doi M, Edwards S F. The Theory of Polymer Dynamics. New York: Oxford University Press, 1986. 1 – 20, 188 – 283

    2. [2]

      Dealy J M, Larson R G. Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again. Munich: Hanser Publishers, 2006. 91 – 126, 193 – 229, 329 – 400, 415 – 464

    3. [3]

      Rubinstein M, Colby R H, Polymer Physics. New York: Oxford University Press, 2003. 30 − 53, 197 − 252

    4. [4]

    5. [5]

      Kalathi J T, Kumar S K, Rubinstein M, Grest G S. Macromolecules, 2014, 47(19): 6925 − 6931  doi: 10.1021/ma500900b

    6. [6]

      Casale A, Porter R S, Johnson J F. Polym Rev, 1971, 5(2): 387 − 408

    7. [7]

      Berry G C, Fox T G. Adv Polym Sci, 1968, 5: 261 − 357

    8. [8]

      Lodge T P. Phys Rev Lett, 1999, 83(16): 3218 − 3221  doi: 10.1103/PhysRevLett.83.3218

    9. [9]

      de Gennes P G. J Chem Phys, 1971, 55(2): 572 − 579  doi: 10.1063/1.1675789

    10. [10]

      Doi M, Edwards S F. J Chem Soc, Faraday Trans 2, 1978, 74: 1789 − 1801  doi: 10.1039/F29787401789

    11. [11]

      Doi M, Edwards S F. J Chem Soc, Faraday Trans 2, 1978, 74: 1802 − 1817  doi: 10.1039/F29787401802

    12. [12]

      Doi M, Edwards S F. J Chem Soc, Faraday Trans 2, 1978, 74: 1818 − 1832  doi: 10.1039/F29787401818

    13. [13]

      Doi M, Edwards S F. J Chem Soc, Faraday Trans 2, 1979, 75: 38 − 54  doi: 10.1039/F29797500038

    14. [14]

      Graham R S, Likhtman A E, McLeish T C B, Milner S T. J Rheol, 2003, 47(5): 1171 − 1200  doi: 10.1122/1.1595099

    15. [15]

      Wang S-Q, Wang Y, Cheng S, Li X, Zhu X, Sun H. Macromolecules, 2013, 46(8): 3147 − 3159  doi: 10.1021/ma300398x

    16. [16]

    17. [17]

      Kaye A, Non-Newtonian Flow in Incompressible Fluids. Cranford: College of Aeronautics Press, 1962. 4 – 16

    18. [18]

      Bernstein B, Kearsley E A, Zapas L J. Trans Soc Rheol, 1963, 7: 391 − 410  doi: 10.1122/1.548963

    19. [19]

      Larson R G, Constitutive Equations for Polymer Melts and Solutions. Stoneham: Butterworth Publishers, 1988. 29 – 49

    20. [20]

      Green M S, Tobolsky A V. J Chem Phys, 1946, 14(2): 80 − 92  doi: 10.1063/1.1724109

    21. [21]

      Lodge A S. Rheol Acta, 1968, 7(4): 379 − 392  doi: 10.1007/BF01984856

    22. [22]

      Doi M. J Polym Sci, Part B: Polym Phys, 1983, 21(5): 667 − 684  doi: 10.1002/pol.1983.180210501

    23. [23]

      Milner S, McLeish T. Phys Rev Lett, 1998, 81(3): 725 − 728  doi: 10.1103/PhysRevLett.81.725

    24. [24]

      Viovy J L, Rubinstein M, Colby R H. Macromolecules, 1991, 24(12): 3587 − 3596  doi: 10.1021/ma00012a020

    25. [25]

      Rubinstein M, Colby R H. J Chem Phys, 1988, 89(8): 5291 − 5306  doi: 10.1063/1.455620

    26. [26]

      Ianniruberto G, Marrucci G. J Non-Newton Fluid Mech, 1996, 65(2): 241 − 246

    27. [27]

      Marrucci G. J Non-Newton Fluid Mech, 1996, 62(2-3): 279 − 289  doi: 10.1016/0377-0257(95)01407-1

    28. [28]

      Likhtman A E, Milner S T, McLeish T C B. Phys Rev Lett, 2000, 85(21): 4550 − 4553  doi: 10.1103/PhysRevLett.85.4550

    29. [29]

      Milner S T, McLeish T C B, Likhtman A E. J Rheol, 2001, 45(2): 539 − 563  doi: 10.1122/1.1349122

    30. [30]

    31. [31]

      Edwards S F. Proc Phys Soc, 1967, 92(575): 9 − 16

    32. [32]

      Edwards S F. British Polym J, 1977, 9(2): 140 − 143  doi: 10.1002/(ISSN)1934-256X

    33. [33]

      Rouse P E. J Chem Phys, 1953, 21(7): 1272 − 1280  doi: 10.1063/1.1699180

    34. [34]

      Likhtman A E, Sukumaran S K, Ramirez J. Macromolecules, 2007, 40(18): 6748 − 6757  doi: 10.1021/ma070843b

    35. [35]

      Onogi S, Masuda T, Kitagawa K. Macromolecules, 1970, 3(2): 109 − 116  doi: 10.1021/ma60014a001

    36. [36]

      Osaki K, Kurata M. Macromolecules, 1980, 13(3): 671 − 676  doi: 10.1021/ma60075a036

    37. [37]

      Osaki K, Nishizawa K, Kurata M. Macromolecules, 1982, 15(4): 1068 − 1071  doi: 10.1021/ma00232a021

    38. [38]

      Archer L A. J Rheol, 1999, 43(6): 1555 − 1571  doi: 10.1122/1.551060

    39. [39]

      Archer L A, Sanchez-Reyes J, Juliani. Macromolecules, 2002, 35(27): 10216 − 10224  doi: 10.1021/ma021286q

    40. [40]

      Tanner R I. Trans Soc Rheol, 1973, 17(2): 365 − 373  doi: 10.1122/1.549317

    41. [41]

      Gao H W, Ramachandran S, Christiansen E B. J Rheol, 1981, 25(2): 213 − 235  doi: 10.1122/1.549617

    42. [42]

      Likhtman A E, McLeish T C B. Macromolecules, 2002, 35(16): 6332 − 6343  doi: 10.1021/ma0200219

    43. [43]

      Graham R S, Henry E P, Olmsted P D. Macromolecules, 2013, 46(24): 9849 − 9854  doi: 10.1021/ma401183w

    44. [44]

      Auhl D, Ramirez J, Likhtman A E, Chambon P, Fernyhough C. J Rheol, 2008, 52(3): 801 − 835  doi: 10.1122/1.2890780

    45. [45]

      Lodge A S. Rheol Acta, 1989, 28(5): 351 − 362  doi: 10.1007/BF01336802

    46. [46]

      Ravindranath S, Wang S Q. Macromolecules, 2007, 40(22): 8031 − 8039  doi: 10.1021/ma071495g

    47. [47]

      Cheng S, Lu Y, Liu G, Wang S Q. Soft Matter, 2016, 12(14): 3340 − 3351  doi: 10.1039/C6SM00142D

    48. [48]

      Wang S Q, Ravindranath S, Boukany P, Olechnowicz M, Quirk R P, Halasa A, Mays J. Phys Rev Lett, 2006, 97(18): 187801(1-4)

    49. [49]

      Boukany P E, Wang S Q, Wang X. Macromolecules, 2009, 42(16): 6261 − 6269  doi: 10.1021/ma9004346

    50. [50]

    51. [51]

      Wang S Q. Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation. Hoboken: John Wiley & Sons, 2018. 4 – 415

    52. [52]

      Inoue T, Uematsu T, Yamashita Y, Osaki K. Macromolecules, 2002, 35(12): 4718 − 4724  doi: 10.1021/ma012149g

    53. [53]

      Huang Q, Hengeller L, Alvarez N J, Hassager O. Macromolecules, 2015, 48(12): 4158 − 4163  doi: 10.1021/acs.macromol.5b00849

    54. [54]

      Nielsen J K, Hassager O, Rasmussen H K, McKinley G H. J Rheol, 2009, 53(6): 1327 − 1346  doi: 10.1122/1.3208073

    55. [55]

      Wang Z, Lam C N, Chen W R, Wang W, Liu J, Liu Y, Porcar L, Stanley C B, Zhao Z, Hong K, Wang Y. Phys Rev X, 2017, 7(3): 031003(1-16)

    56. [56]

      Xu W S, Carrillo J M Y, Lam C N, Sumpter B G, Wang Y. ACS Macro Lett, 2018, 7(2): 190 − 195  doi: 10.1021/acsmacrolett.7b00900

    57. [57]

      Hsu H P, Kremer K. ACS Macro Lett, 2017, 7(1): 107 − 111

    58. [58]

      Kröger M, Hess S. Phys Rev Lett, 2000, 85(5): 1128 − 1131  doi: 10.1103/PhysRevLett.85.1128

    59. [59]

      Kremer K, Grest G S. J Chem Phys, 1990, 92(8): 5057 − 5086  doi: 10.1063/1.458541

  • 加载中
    1. [1]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    2. [2]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    3. [3]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Yuhao Chen Zhuo Cheng Qijun Hu Jian Pei . 酸碱理论的发展历程. University Chemistry, 2025, 40(8): 368-375. doi: 10.12461/PKU.DXHX202412001

    6. [6]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Weigang Zhu Jianfeng Wang Qiang Qi Jing Li Zhicheng Zhang Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002

    8. [8]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    9. [9]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    10. [10]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    13. [13]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    14. [14]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    15. [15]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    16. [16]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    17. [17]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    18. [18]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    19. [19]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    20. [20]

      Fan Yang Yanhong Bai Pin Gao Xinhua Duan Yunchuan Xie . Exploration and Practice of Teaching Reform in Polymer Chemistry Experiment Course. University Chemistry, 2025, 40(10): 63-71. doi: 10.12461/PKU.DXHX202412013

Metrics
  • PDF Downloads(0)
  • Abstract views(366)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return