Citation: Yu Zhu, Wen-ling Ye, Zhi-feng Liu, Wei Deng, Mei-na Liu. Synthesis and Properties of Well-defined Glycopolymers via Combining Ring-opening Metathesis Polymerization and CuAAC Reaction[J]. Acta Polymerica Sinica, ;2019, 50(1): 44-54. doi: 10.11777/j.issn1000-3304.2018.18167 shu

Synthesis and Properties of Well-defined Glycopolymers via Combining Ring-opening Metathesis Polymerization and CuAAC Reaction

  • A series of glycopolymers were prepared through combining ring-opening metathesis polymerization (ROMP) and CuAAC reaction. Firstly, a wide range of exo-7-oxanorbornene derivative glycomonomers without protecting groups were synthesized via a copper(I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC) reaction, including α-D-mannose, β-D-glucose, and β-D-galactose. A series of well-defined glycopolymers were then obtained from various types and proportions of the above glycomonomers using ring-opening metathesis polymerization (ROMP) with the 3rd Grubbs catalyst in homogeneous organic solvent. Molecular weight and polydispersity index (PDI) of the glycopolymers were characterized by NMR spectroscopy and GPC, from which the well-controlled molecular weight (Mn = 1.3 × 104 − 2.7 × 10 4) in narrow distribution (PDI = 1.22 ~ 1.45) was confirmed. Turbidity measurement, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC) were carried out to investigate the specific recognition of glycopolymers with concanavalin A (Con A). Turbidimetric study suggested a stronger binding ability of glycopolymers with Con A at higher ratio of α-D-mannose in glycopolymers. In comparison, those composed solely of β-D-galactose (P9) or β-D-glucose (P5) could not bind to Con A. Dynamic light scattering experiments demonstrated that the particle sizes of glycopolymers containing α-D-mannose approached 1000 nm with the addition of Con A (originally 100 nm), while the glycopolymers without α-D-mannose showed little size variation. Binding constants (Ka) of the three glycopolymers P3 (50 mol% α-D-mannose, 50 mol% β-D-glucose), P7 (50 mol% α-D-mannose, 50 mol% β-D-galactose), and P11 (50 mol% α-D-mannose, 50 mol% non-sugar motif) with Con A were 1.58 × 106, 2.23 × 106, and 2.05 × 105 L/mol, respectively, as measured by isothermal titration calorimetry. P11 exhibited much weaker ability to bind with Con A than P3 andP7 did, which implied a synergistic effect of β-D-glucose and β-D-galactose on the recognition of α-D-mannose with Con A.
  • 加载中
    1. [1]

      Hashimoto K, Ohsawa R, Saito H. J Polym Sci, Part A: Polym Chem, 1999, 37: 2773 − 2779  doi: 10.1002/(ISSN)1099-0518

    2. [2]

      Fu Q, Gowda D C. Bioconjugate Chem, 2001, 12: 271 − 279  doi: 10.1021/bc000100u

    3. [3]

      Ma Z, Jia Y, Zhu X. Biomacromolecules, 2017, 18: 3812 − 3818  doi: 10.1021/acs.biomac.7b01106

    4. [4]

      Wolfenden M L, Cloninger M J. Bioconjugate Chem, 2006, 17: 958 − 966  doi: 10.1021/bc060107x

    5. [5]

      Serizawa T, Satoshi Y, Akashi M. Biomacromolecules, 2001, 2: 469 − 475  doi: 10.1021/bm000131s

    6. [6]

      Kanai M, Mortell K H, Kiessling L L. J Am Chem Soc, 1997, 119: 9931 − 9932  doi: 10.1021/ja972089n

    7. [7]

      Fan F, Cai C, Wang W, Gao L, Li J, Li J, Gu F, Sun T, Li J, Li C, Yu G. ACS Macro Lett, 2018, 7: 330 − 335  doi: 10.1021/acsmacrolett.8b00056

    8. [8]

      Ting, S R S, Min, E H, Escale P, Save M, Billon L, Stenzel M H. Macromolecules, 2009, 42: 9422 − 9434  doi: 10.1021/ma9019015

    9. [9]

      Song W, Xiao C, Cui L. Tang Z, Zhuang X, Chen X. Colloid Surface B, 2012, 93: 188 − 194  doi: 10.1016/j.colsurfb.2012.01.002

    10. [10]

      Chen Y, Chen G, Stenzel M H. Macromolecules, 2010, 43: 8109 − 8114  doi: 10.1021/ma100919x

    11. [11]

      Allen M J, Wangkanont K, Raines R T, Kiessling L L. Macromolecules, 2009, 42: 4023 − 4027  doi: 10.1021/ma900056b

    12. [12]

      Medina J M, Ko J H, Maynard H D, Garg, N K. Macromolecules, 2017, 50: 580 − 586  doi: 10.1021/acs.macromol.6b02376

    13. [13]

      Thompson M P, Randolph L M, James C R, Davalos A N, Hahn M E, Gianneschi N C. Polym Chem, 2014, 5: 1954 − 1964  doi: 10.1039/C3PY01338C

    14. [14]

      Ladmiral V, Mantovani G, Clarkson G J, Cauet S, Irwin J L, Haddleton D M. J Am Chem Soc, 2006, 128: 4823 − 4830  doi: 10.1021/ja058364k

    15. [15]

      Loka R S, Mcconnell M S, Nguyen H M. Biomacromolecules, 2015, 16: 4013 − 4021  doi: 10.1021/acs.biomac.5b01380

    16. [16]

      Gordon E J, Gestwicki J E, Strong L E, Kiessling L L. Chem Bio, 2000, 7: 9 − 16  doi: 10.1016/S1074-5521(00)00060-0

    17. [17]

      Manning D D, Xu X, Beck P, Kiessling L L. J Am Chem Soc, 1997, 119: 3161 − 3162  doi: 10.1021/ja964046x

    18. [18]

      Cairo C W, Gestwicki J E, Kanai M, Kiessling L L. J Am Chem Soc, 2002, 124: 1615 − 1619  doi: 10.1021/ja016727k

    19. [19]

      Fan F, Cai C, Gao L, Li J, Zhang P, Li L, Li C, Yu G. Polym Chem, 2017, 8: 6709 − 6719  doi: 10.1039/C7PY01415E

    20. [20]

      Lowe A B, Liu M, Van H J, Burford R P. Macromol. Rapid Commun, 2014, 35: 391 − 404  doi: 10.1002/marc.v35.4

    21. [21]

      Liu M, Hensbergen J V, Burford R P, Lowe A B. Polym Chem, 2012, 3: 1647 − 1658  doi: 10.1039/c2py20155k

    22. [22]

      van Hensbergen J A, Liu M N, Burford R P, Lowe A B. J Mater Chem C, 2015, 3: 693 − 702  doi: 10.1039/C4TC01971G

    23. [23]

      Kang B, Okwieka P, Schoettler S, Winzen S, Langhanki J, Mohr K, Wurm F R. Angew Chem, 2015, 54: 7436 − 7740  doi: 10.1002/anie.v54.25

    24. [24]

      Percec V, Leowanawat P, Sun H J, Kulikov O, Nusbaum C D, Tran T M, Bertin A, Wilson D A, Peterca M, Zhang S, Kamat N P, Vargo K, Moock D, Johnston E D, Hammer D A, Pochan D J, Chen Y, Chabre Y M, Shiao T C, Bergeron-Brlek M, Andre S, Roy R, Gabius H J, Heiney P A. J Am Chem Soc, 2013, 135: 9055 − 9077

    25. [25]

      García V S, Delso I, Merino P, Tejero T. Synthesis, 2016, 48: 3339 − 3351  doi: 10.1055/s-0035-1562500

    26. [26]

      Li Y, Zhou Y, Zhou Y, Yu Q, Zhu J, Zhou N, Zhang Z, Zhu X. React Funct Polym, 2017, 116: 41 − 48  doi: 10.1016/j.reactfunctpolym.2017.05.003

    27. [27]

      Liu M, Burford R P, Lowe A B. Polym Int, 2014, 63: 1174 − 1183  doi: 10.1002/pi.2014.63.issue-7

    28. [28]

      Kose M M, Onbulak S, Yilmaz I I, Sanyal A. Macromolecules, 2011, 44: 2707 − 2714  doi: 10.1021/ma200593r

    29. [29]

      Eissa A M, Khosravi E. Macromol Chem Phys, 2015, 216: 964 − 976  doi: 10.1002/macp.v216.9

    30. [30]

      Ma P, Liu S, Huang Y, Chen X, Zhang L, Jing X. Biomaterials, 2010, 31: 2646 − 2654  doi: 10.1016/j.biomaterials.2009.12.019

    31. [31]

      Xue H, Peng L, Dong Y, Zheng Y Q, Luan Y, Hu X, Chen G, Chen H. RSC Adv, 2017, 7: 8484 − 8490  doi: 10.1039/C6RA28763H

    32. [32]

      Lu J, Fu C K, Wang S, Tao L, Yuan L, Haddleton D M, Chen G, Wen Y. Macromolecules, 2014, 47: 4676 − 4683  doi: 10.1021/ma500664u

  • 加载中
    1. [1]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    2. [2]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    11. [11]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    12. [12]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    14. [14]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    19. [19]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(0)
  • Abstract views(307)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return