Citation: Han Bao, Yue Zhang, Hui-min Tang, Ding-sheng Yu, Ri-wei Xu. Study on the Structure and Properties of Bisphenol A-type Benzoxazine Resins Catalyzed by Organotin Oligomersesquioxanes[J]. Acta Polymerica Sinica, ;2019, 50(1): 55-61. doi: 10.11777/j.issn1000-3304.2018.18166 shu

Study on the Structure and Properties of Bisphenol A-type Benzoxazine Resins Catalyzed by Organotin Oligomersesquioxanes

  • Corresponding author: Ri-wei Xu, xurw@mail.buct.edu.cn
  • Received Date: 17 July 2018
    Revised Date: 3 August 2018
    Available Online: 8 September 2018

  • Polybenzoxazines (PBz) is a new type of phenolic-like resins, which have excellent properties such as good mechanical and thermal properties, no volatile release upon cure, and molecular designing flexiblility. However, their major drawbacks are the high curing temperature and similar brittleness as phenolic resins. In this study, organotin silsesquioxanes (DOSn-Bu) are synthesized via capping reaction based on disilanol-POSS and Bu2SnCl2. Due to the cage-type hybrid structure, the metal-based oligomeric silsesquioxane (POMSS) possesses good thermal stability and mechanical properties. The mental centers are Lewis acid that catalyze ring-opening polymerization of benzoxazine monomers. The structure of DOSn-Bu was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR) and X-ray single crystal diffraction. A series of benzoxazine/DOSn-Bu hybrid resins were prepared by ultrasonic blending. FTIR results showed that the benzoxazine began to ring-open at 160 – 180 °C. The results of DSC showed that the initial curing temperature decreased by almost 50 °C and the peak curing temperature decreased by approximately 30 °C with the addition of DOSn-Bu. The thermal and mechanical properties of the hybrid material with different DOSn-Bu incorporation were measured by dynamic mechanical thermal analysis (DMTA) and thermal gravimetric analysis (TGA). DMTA result showed that the storage modulus ( E′) and glass transition temperature of the hybrid materials were improved. When 2 wt% of DOSn-Bu was added, the resins retained high storage modulus (E′ = 2.1 GPa at 50 °C) and high glass transtion temperature (Tg = 228 °C). TGA study showed that the hybrid materials possessed good thermal stability. From the scanning electron microscopy (SEM) mapping, it was found that the Si and Sn elements were greatly distributed in the system, thereby indicating that the catalysts were uniformly dispersed in the system with good compatibility with the resin matrix. The fracture surface morphologies of the cured resin were investigated by SEM. The roughness of the fracture surface of the hybrid material was increased compared with that of the pure benzoxazine resin and its texture became more complicated.
  • 加载中
    1. [1]

      Li G Z, Wang L C, Ni H L, Pittman Jr. C U. J Inorg Organomet Polym, 2001, 11(3): 123 − 154

    2. [2]

      Ye Q, Zhou H, Xu J W. Chem Asian J, 2016, 11(9): 1322 − 1337

    3. [3]

      Feher F J. J Am Chem Soc, 1986, 108(13): 3850 − 3852

    4. [4]

      Feher F J, Newman D A, Walzer J. J Am Chem Soc, 1989, 111(5): 1741 − 1748

    5. [5]

      Ouyang J, Sun H T, Liang Y L, Li D, Commisso A, Xu R W, Yu D S. Curr Org Chem, 2017, 21(28): 2829 − 2848

    6. [6]

      Duchateau R, Dijkstra T W, Severn J R, van Santen R A, Korobkov I V. Dalton Trans, 2004, (17): 2677 − 2682

    7. [7]

      Gun’ ko Y K, Nagy L, Brüser W, Lorenz V, Fischer A, Gieβmann S, Edelmann F T, Jacob K, Vértes A. Monatsh Chem, 1999, 130(1): 45 − 54

    8. [8]

      Strachota A, Rodzeń K, Ribot F, Trchová M, Steinhart M, Starovoytova L, Pavlova E. Macromolecules, 2014, 47(13): 4266 − 4287

    9. [9]

      Beletskiy E V, Hou X L, Shen Z L, Gallagher J R, Miller J T, Wu Y Y, Li T H, Kung M C, Kung H H. J Am Chem Soc, 2016, 138(13): 4294 − 4297

    10. [10]

      Beletskiy E V, Shen Z L, Riofski M V, Hou X L, Gallagher J R, Miller J T, Wu Y Y, Kung H H, Kung M C. Chem Commun, 2014, 50(99): 15699 − 15701

    11. [11]

      Beletskiy E V, Wu Y Y, Kung M C, Kung H H. Organometallics, 2016, 35(3): 301 − 302

    12. [12]

      Ishida H, Allen D J. J Polym Sci, Part B: Polym Phys, 1996, 34(6): 1019 − 1030

    13. [13]

      Ishida H, Sanders D. J Polym Sci, Part B: Polym Phys, 2000, 38(24): 3289 − 3301

    14. [14]

      Holly W F, Cope A C. J Am Chem Soc, 1944, 66(11): 1875 − 1879

    15. [15]

      Sudha, Sarojadevi. High Perform Polym, 2015, 28(3): 331 − 339

    16. [16]

      Xin N, Ishida H. J Polym Sci, Part A: Polym Chem, 1994, 32(6): 1121 − 1129

    17. [17]

      Xu Y, Dai J, Ran Q C, Gu Y. Polymer, 2017, 123: 232 − 239

    18. [18]

      Hanbeyoglu B, Kiskan B, Yagci Y. Macromolecules, 2013, 46(21): 8434 − 8440

    19. [19]

      Ishida H, Rodriguez Y. J Appl Polym Sci, 1995, 58(10): 1751 − 1760

    20. [20]

      Wang Y X, Ishida H. Polymer, 1999, 40: 4563 − 4570

    21. [21]

      Ručigaj A, Alič B, Šebenuk U. Express Polym Lett, 2015, 9(7): 647 − 657

    22. [22]

    23. [23]

      Sharma P, Kumar D, Roy P K. Polymer, 2018, 138: 343 − 351

    24. [24]

      Sudo A, Hirayama S J, Endo T. J Polym Sci, Part A: Polym Chem, 2010, 48(2): 479 − 484

    25. [25]

    26. [26]

      Velez-Herrera P, Doyama K, Abe H, Ishida H. Macromolecules, 2008, 41(24): 9704 − 9714

  • 加载中
    1. [1]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    2. [2]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    3. [3]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    4. [4]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    11. [11]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    12. [12]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(0)
  • Abstract views(225)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return