Citation: Ai-hui Liang, Han Wang, Tian Cao, Ming Luo, De-wang Liu, Yi Chen, Zhi-ping Wang. Synthesis and Properties of Phosphorescent Polymers with Aggregation-induced Emission[J]. Acta Polymerica Sinica, ;2019, 50(1): 27-35. doi: 10.11777/j.issn1000-3304.2018.18160 shu

Synthesis and Properties of Phosphorescent Polymers with Aggregation-induced Emission

  • Corresponding author: Ai-hui Liang, lah14god@163.com
  • Received Date: 10 July 2018
    Revised Date: 25 July 2018
    Available Online: 21 September 2018

  • A series of phosphorescent polymers with aggregation-induced emission (AIE) feature were synthesized by palladium-catalyzed Suzuki polycondensation of tetraphenylethene (TPE), iridium complex and 9,9-dioctylfluorene. All the obtained polymers are soluble in common organic solvents, such as chloroform, dichloromethane and tetrahydrofuran (THF), at room temperature, but insoluble in water. Their thermal and photophysical properties, as well as AIE performance of the resulting phosphorescent polymers are investigated with different feed ratios of iridium complex varing from 0.5% to 4%. These polymers display good thermal properties with a high thermal degradation temperature (> 300 °C) and glass transition temperature (≈ 100 °C). Polymer PFTPE displays the maximum photoluminescent (PL) emission at 440 nm. Relative to PFTPE, all the phosphorescent polymers prepared with iridium complex feed ratios in the range of 0.5% − 4% emit green light with an emission peak at about 505 nm. AIE performances of these phosphorescent polymers are examined by studying the PL emission behaviour of their diluted mixture in THF/water under different water fractions (fw). The aggregates are prepared by adding different fractions (fw = 0% to 90%) of ultra-pure water into THF solution. Both PL intensity and quantum yield (ФPL) of PFTPE-Fir0.5 and PFTPE-Fir1 exhibit an upward trend with the increasing fw from 0% to 80%. However, when fw further increases from 80% to 90%, PL intensity and ФPL show downward trend. The maximum values of ФPL are 37.3% for PFTPE-FIr0.5 and 38.6% for PFTPE-FIr1, respectively. Similarly, PL intensity and ФPL of PFTPE-FIr2 and PFTPE-FIr4 display the same behaviour as PFTPE-FIr0.5 and PFTPE-FIr1. And PFTPE-FIr2 and PFTPE-FIr4 reach the maximum ФPL value of 37.2% and 39.9%, respectively, at fw of 30%. This indicates that these phosphorescent polymers have AIE feature, suggesting that they are potential materials for fabrication of organic light-emitting diodes and fluorescent sensors.
  • 加载中
    1. [1]

      Tang C W, VanSlyke S A. Appl Phys Lett, 1987, 51(12): 913 − 915  doi: 10.1063/1.98799

    2. [2]

      Wong W Y, Ho C L. Coord Chem Rev, 2009, 253(13-14): 1709 − 1758  doi: 10.1016/j.ccr.2009.01.013

    3. [3]

      Wang K, Zhao F, Wang C, Chen S, Chen D, Zhang H, Liu Y, Ma D, Wang Y. Adv Funct Mater, 2013, 23(21): 2672 − 2680  doi: 10.1002/adfm.v23.21

    4. [4]

      Zhong C, Duan C, Huang F, Wu H, Cao Y. Chem Mater, 2010, 23(3): 326 − 340

    5. [5]

      Zheng H, Zheng Y, Liu N, Ai N, Wang Q, Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J, Cao Y. Nat Commun, 2013, 4: 1971  doi: 10.1038/ncomms2971

    6. [6]

    7. [7]

      Ma Y G, Zhang H Y, Shen J C, Che C M. Synth Met, 1998, 94(3): 245 − 248  doi: 10.1016/S0379-6779(97)04166-0

    8. [8]

      Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151 − 154  doi: 10.1038/25954

    9. [9]

      Yang X, Zhou G, Wong W Y. Chem Soc Rev, 2015, 44(23): 8484 − 8575  doi: 10.1039/C5CS00424A

    10. [10]

      Ulbricht C, Beyer B, Friebe C, Winter A, Schubert U S. Adv Mater, 2009, 21(44): 4418 − 4441  doi: 10.1002/adma.v21:44

    11. [11]

      Wong W Y, Ho C L. J Mater Chem, 2009, 19(26): 4457 − 4482  doi: 10.1039/b819943d

    12. [12]

      Jiang B, Gu Y, Qin J, Ning X, Gong S, Xie G, Yang C. J Mater Chem C, 2016, 4(16): 3492 − 3498  doi: 10.1039/C6TC00148C

    13. [13]

      Liang A, Ying L, Huang F. J Inorg Organomet Polym Mater, 2014, 24(6): 905 − 926  doi: 10.1007/s10904-014-0099-8

    14. [14]

      Zhang K, Zhong C, Liu S, Liang A H, Dong S, Huang F. J Mater Chem C, 2014, 2(17): 3270 − 3277  doi: 10.1039/C3TC32022G

    15. [15]

      Tang C, Liu X D, Liu F, Wang X L, Xu H, Huang W. Macromol Chem Phys, 2013, 214(3): 314 − 342  doi: 10.1002/macp.201200305

    16. [16]

      Zhu M, Li Y, Cao X, Jiang B, Wu H, Qin J, Cao Y, Yang C. Macromol Rapid Commun, 2014, 35(24): 2071 − 2076  doi: 10.1002/marc.v35.24

    17. [17]

      Yang X, Zhou G, Wong W Y. J Mater Chem C, 2014, 2(10): 1760 − 1778  doi: 10.1039/c3tc31953a

    18. [18]

      Shao S, Ding J, Wang L, Jing X, Wang F. J Am Chem Soc, 2012, 134(50): 20290 − 20293  doi: 10.1021/ja310158j

    19. [19]

      Hong Y, Lam J W Y, Tang B Z. Chem Soc Rev, 2011, 40(11): 5361 − 5388  doi: 10.1039/c1cs15113d

    20. [20]

      Liang A, Wang H, Chen Y, Zheng X, Cao T, Yang X, Cai P, Wang Z, Zhang X, Huang F. Dyes Pigm, 2018, 149: 399 − 406  doi: 10.1016/j.dyepig.2017.10.020

    21. [21]

      Tang B Z, Zhan X, Yu G, Sze Lee P P, Liu Y, Zhu D. J Mater Chem, 2001, 11(12): 2974 − 2978  doi: 10.1039/b102221k

    22. [22]

    23. [23]

    24. [24]

      Liu Z, Hu S, Zhang L, Chen J, Peng J, Cao Y. Sci China Chem, 2013, 56(8): 1129 − 1136  doi: 10.1007/s11426-013-4875-z

    25. [25]

      Liu J, Lam J W Y, Tang B Z. Chem Rev, 2009, 109(11): 5799 − 5867  doi: 10.1021/cr900149d

    26. [26]

    27. [27]

      He B, Ye S, Guo Y, Chen B, Xu X, Qiu H, Zhao Z. Sci China Chem, 2013, 56(9): 1221 − 1227  doi: 10.1007/s11426-013-4929-2

    28. [28]

      Chen M, Nie H, Song B, Li L, Sun J Z, Qin A, Tang B Z. J Mater Chem C, 2016, 4(14): 2901 − 2908  doi: 10.1039/C5TC03299G

    29. [29]

      Luo Y, Aziz H. Adv Funct Mater, 2010, 20(8): 1285 − 1293  doi: 10.1002/adfm.v20:8

  • 加载中
    1. [1]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    2. [2]

      Pan Li Huguo Shen Cong Hua Jinjie Fang Xiangying Chi Quan Jiang Zichen Feng Ye Kang Bin Zheng . Synthesis and Characterization of an Aggregation-Induced Emission-Active Organic Cage Molecule: A Proposed Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(11): 337-345. doi: 10.12461/PKU.DXHX202502083

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    5. [5]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    6. [6]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    7. [7]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    8. [8]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Huihua GONGTianhua CUILi JIJichuan ZHANGLiyuan ZHANGYan CHENZhenye WANGJiaqi XURuixiang LI . Hydrogenation of CO2 to formate catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated iridium(Ⅰ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2609-2620. doi: 10.11862/CJIC.20250170

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(0)
  • Abstract views(239)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return