Citation: Zhong-bao Jian. Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers[J]. Acta Polymerica Sinica, ;2018, 0(11): 1359-1371. doi: 10.11777/j.issn1000-3304.2018.18146 shu

Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers

  • Corresponding author: Zhong-bao Jian, zbjian@ciac.ac.cn
  • Received Date: 26 June 2018
    Available Online: 6 September 2018

  • Coordination-insertion copolymerization of olefins and polar monomers for the preparation of functionalized polyolefins is one of the most important project in the field of olefin polymerization in the past twenty years. Due to the incorporation of functional groups, functionalized polyolefins, as the high value-added polymer materials, are of better surface properties and compatibility than those without any functionality, thus leading to expanding the range of applications. However, the presence of functional groups can also accelerate the chain transfer and chelate to the active central metal in the copolymerization of olefin and polar monomers, therefore this type of copolymerization suffers from lower catalytic activity and lower polymer molecular weight than the corresponding homo-polymerization of the olefins. As a result, the key for the high performance synthesis of functionalized polyolefins is to overcome the problem related to the functional groups of the polar monomers. In this Feature Article, recent research progress on the copolymerization of olefins and polar monomers to achieve the functionalized polyolefins by using late transition metal catalysts will be mostly summarized. Firstly, the milestone catalysts for the synthesis of functionalized polyolefins are introduced, and the latest research progresses on how to overcome the problem of polar monomer by designing nickel and palladium catalysts are highlighted. Then a series of our findings in recent years on the design of the polar monomers for the synthesis of functionalized polyolefins are revealed in detail, including the concept of polar di-vinyl monomers to overcome the problems related to polar monomers (rapid chain transfer reaction and chelation of functional group to active central metal) and the strategy of vinyl furan monomer with secondary coordination effect to synthesize novel functionalized polyolefins (telechelic polyolefin with two reactive endgroups). Finally, future development and long-standing challenges in the community of functionalized polyolefins by the copolymerization of olefins and polar monomers are out looked.
  • 加载中
    1. [1]

      Dong J Y, Hu Y L. Coord Chem Rev, 2006, 250(1-2): 47 − 65

    2. [2]

      Boaen N K, Hillmyer M A. Chem Soc Rev, 2005, 34(3): 267 − 275

    3. [3]

      Franssen N M G, Reek J N H, de Bruin B. Chem Soc Rev, 2013, 42(13): 5809 − 5832

    4. [4]

      Boffa L S, Novak B M. Chem Rev, 2000, 100(4): 1479 − 1494

    5. [5]

      Chen E Y X. Chem Rev, 2009, 109(11): 5157 − 5214

    6. [6]

      Nakamura A, Ito S, Nozaki K. Chem Rev, 2009, 109(11): 5215 − 5244

    7. [7]

      Nakamura A, Anselment T M J, Claverie J, Goodall B, Jordan R F, Mecking S, Rieger B, Sen A, van Leeuwen P W N M, Nozaki K. Acc Chem Res, 2013, 46(7): 1438 − 1449

    8. [8]

      Terao H, Ishii S, Mitani M, Tanaka H, Fujita T. J Am Chem Soc, 2008, 130(52): 17636 − 17637

    9. [9]

      Yang X, Liu C, Wang C, Sun X, Guo Y, Wang X, Wang Z, Xie Z, Tang Y. Angew Chem Int Ed, 2009, 48(43): 8099 − 8102

    10. [10]

      Chen Z, Li J, Tao W, Sun X, Yang X, Tang Y. Macromolecules, 2013, 46(7): 2870 − 2875

    11. [11]

      Wang X Y, Wang Y, Shi X C, Liu J Y, Chen C L, Li Y S. Macromolecules, 2014, 47(2): 552 − 559

    12. [12]

      Liu D T, Yao C G, Wang R, Wang M Y, Wang Z C, Wu C J, Lin F, Li S H, Wan X H, Cui D M. Angew Chem Int Ed, 2015, 54(17): 5205 − 5209

    13. [13]

      Liu D T, Wang M Y, Wang Z C, Wu C J, Pan Y P, Cui D M. Angew Chem Int Ed, 2017, 56(10): 2714 − 2719

    14. [14]

      Wang C X, Luo G, Nishiura M, Song G Y, Yamamoto A, Luo Y, Hou Z M. Sci Adv, 2017, 3(7): e1701011

    15. [15]

    16. [16]

      Chen J, Gao Y, Wang B, Lohr T L, Marks T J. Angew Chem Int Ed, 2017, 56(50): 15964 − 15968

    17. [17]

      Keim W, Kowaldt F H, Goddard R, Krüger C. Angew Chem Int Ed Engl, 1978, 17(6): 466 − 467

    18. [18]

      Johnson, L K, Mecking S, Brookhart M. J Am Chem Soc, 1996, 118(1): 267 − 268

    19. [19]

      Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R I. Chem Commun, 2002: 744 − 745

    20. [20]

      Camacho D H, Salo E V, Ziller J W, Guan Z. Angew Chem Int Ed, 2004, 43(14): 1821 − 1825

    21. [21]

      Popeney C S, Camacho D H, Guan Z. J Am Chem Soc, 2007, 129(33): 10062 − 10063

    22. [22]

      Vaidya T, Klimovica K, LaPointe A M, Keresztes I, Lobkovsky E B, Daugulis O, Coates G W. J Am Chem Soc, 2014, 136(20): 7213 − 7216

    23. [23]

      Allen K E, Campos J, Daugulis O, Brookhart M. ACS Catal, 2015, 5(1): 456 − 464

    24. [24]

      Rhinehart J L, Brown L A, Long B K. J Am Chem Soc, 2013, 135(44): 16316 − 16319

    25. [25]

      Dai S Y, Sui X L, Chen C L. Angew Chem Int Ed, 2015, 54(34): 9948 − 9953

    26. [26]

      Dai S Y, Chen C L. Angew Chem Int Ed, 2016, 55(42): 13281 − 13285

    27. [27]

      Long B K, Eagan J M, Mulzer M, Coates G W. Angew Chem Int Ed, 2016, 55(25): 7106 − 7110

    28. [28]

      Zhong L, Li G, Liang G, Gao H, Wu Q. Macromolecules, 2017, 50(7): 2675 − 2682

    29. [29]

      Zhong S, Tan Y, Zhong L, Gao J, Liao H, Jiang L, Gao H, Wu Q. Macromolecules, 2017, 50(15): 5661 − 5669

    30. [30]

      Guo L, Gao H, Guan Q, Hu H, Deng J, Liu J, Liu F, Wu Q. Organometallics, 2012, 31(17): 6054 − 6062

    31. [31]

      Skupov K M, Marella P R, Simard M, Yap G P A, Allen N, Conner D, Goodall B L, Claverie J P. Macromol Rapid Commun, 2007, 28(20): 2033 − 2038

    32. [32]

      Guironnet D, Roesle P, Rünzi T, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2009, 131(2): 422 − 423

    33. [33]

      Neuwald B, Caporaso L, Cavallo L, Mecking S. J Am Chem Soc, 2013, 135(3): 1026 − 1036

    34. [34]

      Wucher P, Goldbach V, Mecking S. Organometallics, 2013, 32(16): 4516 − 4522

    35. [35]

      Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J Am Chem Soc, 2014, 136(34): 11898 − 11901

    36. [36]

      Chen M, Chen C L. ACS Catal, 2017, 7(2): 1308 − 1312

    37. [37]

      Carrow B P, Nozaki K. J Am Chem Soc, 2012, 134(21): 8802 − 8805

    38. [38]

      Xin B S, Sato N, Tanna A, Oishi Y, Konishi Y, Shimizu F. J Am Chem Soc, 2017, 139(10): 3611 − 3614

    39. [39]

      Chen M, Chen C L. Angew Chem Int Ed, 2018, 57(12): 3094 − 3098

    40. [40]

      Mitsushige Y, Yasuda H, Carrow B P, Ito S, Kobayashi M, Tayano T, Watanabe Y, Okuno Y, Hayashi S, Kuroda J, Okumura Y, Nozaki K. ACS Macro Lett, 2018, 7(3): 305 − 311

    41. [41]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ACS Catal, 2018, 8: 5963 − 5976

    42. [42]

      Yasuda H, Nakano R, Ito S, Nozaki K. J Am Chem Soc, 2018, 140(10): 1876 − 1883

    43. [43]

      Chen Z, Liu W, Daugulis O, Brookhart M. J Am Chem Soc, 2016, 138(49): 16120 − 16129

    44. [44]

      Chen Z, Leatherman M D, Daugulis O, Brookhart M. J Am Chem Soc, 2017, 139(44): 16013 − 16022

    45. [45]

      Radlauer M R, Buckley A K, Henling L M, Agapie T. J Am Chem Soc, 2013, 135(10): 3784 − 3787

    46. [46]

      Takeuchi D, Chiba Y, Takano S, Osakada K. Angew Chem Int Ed, 2013, 52(48): 12536 − 12540

    47. [47]

      Takano S, Takeuchi D, Osakada K, Akamatsu N, Shishido A. Angew Chem Int Ed, 2014, 53(35): 9246 − 9250

    48. [48]

      Li M, Wang X B, Luo Y, Chen C L. Angew Chem Int Ed, 2017, 56(38): 11604 − 11609

    49. [49]

      Zhang D, Chen C L. Angew Chem Int Ed, 2017, 56(46): 14672 − 14676

    50. [50]

      Chen M, Yang B P, Chen C L. Angew Chem Int Ed, 2015, 54(51): 15520 − 15524

    51. [51]

      Mu H L, Pan L, Song D P, Li Y S. Chem Rev, 2015, 115(22): 12091 − 12137

    52. [52]

      Guo L H, Liu W J, Chen C L. Mater Chem Front, 2017, 1(12): 2487 − 2494

    53. [53]

      Chen C L. Nat Rev Chem, 2018, 2(5): 6 − 14

    54. [54]

      Chen C L. ACS Catal, 2018, 8(6): 5506 − 5514

    55. [55]

      Daigle J C, Piche L, Arnold A, Claverie J P. ACS Macro Lett, 2012, 1(3): 343 − 346

    56. [56]

      Rünzi T, Guironnet D, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2010, 132(46): 16623 − 16630

    57. [57]

      Jian Z, Baier M C, Mecking S. J Am Chem Soc, 2015, 137(8): 2836 − 2839

    58. [58]

      Jian Z, Mecking S. Angew Chem Int Ed, 2015, 54(52): 15845 − 15849

    59. [59]

      Wimmer F P, Caporaso L, Cavallo L, Mecking S, Falivene L. Macromolecules, 2018, 51(12): 4525 − 4531

    60. [60]

      Luo S, Vela J, Lief G R, Jordan R F. J Am Chem Soc, 2007, 129(29): 8946 − 8947

    61. [61]

      Chen C L, Luo S, Jordan R F. J Am Chem Soc, 2010, 132(14): 5273 − 5284

    62. [62]

      Jian Z, Mecking S. Macromolecules, 2016, 49(42): 4395 − 4403

    63. [63]

      Jian Z, Falivene L, Boffa G, Ortega Sánchez S, Caporaso L, Grassi A, Mecking S. Angew Chem Int Ed, 2016, 55(46): 14378 − 14383

    64. [64]

      Dai S Y, Zhou S X, Zhang W, Chen C L. Macromolecules, 2016, 49(23): 8855 − 8862

    65. [65]

      Na Y N, Dai S Y, Chen C L. Macromolecules, 2018, 51(12): 4040 − 4048

  • 加载中
    1. [1]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    2. [2]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    5. [5]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    6. [6]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    7. [7]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    8. [8]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    12. [12]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    13. [13]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

Metrics
  • PDF Downloads(0)
  • Abstract views(242)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return