Citation: Jia Liu, Xiao-ning Ma, Mei-dong Lang. Synthesis and Characterization of Dynamic Covalent Polymers Based on Ditelluride Bonds[J]. Acta Polymerica Sinica, ;2018, 0(12): 1514-1523. doi: 10.11777/j.issn1000-3304.2018.18133 shu

Synthesis and Characterization of Dynamic Covalent Polymers Based on Ditelluride Bonds

  • Corresponding author: Mei-dong Lang, mdlang@ecust.edu.cn
  • Received Date: 29 May 2018
    Revised Date: 15 June 2018
    Available Online: 19 July 2018

  • Dynamic covalent polymers that inherit the reversibility and robustness of dynamic covalent bonds have attracted considerable attention in terms of self-healing, stimuli-responsiveness, and recyclability. However, most of them require an external stimulus to induce their dynamic properties, which may limit their application. Here, two dynamic covalent polymers based on ditelluride bonds were prepared, which were free of external conditions. First, a novel stable ditelluride-containing compound, di-(1-hydroxypropyl) ditelluride ((HOC3H6Te)2) was synthesized. Then, two ditelluride-containing polymers, polycaprolactone (PCLTe)2 and poly(1,3-trimethylene carbonate) (PTMCTe)2 were synthesized via the enzymatic ring-opening polymerization using (HOC3H6Te)2 as the initiator and Novozym 435 as the catalyst. The structures of (PCLTe)2 and (PTMCTe)2 were verified by 1H-NMR and 125Te-NMR. The dynamic properties of the ditelluride-containing polymers were investigated using (PCLTe)2 and (PTMCTe)2 as the model polymers and confirmed by 1H-NMR, 13C-NMR and 125Te-NMR spectra. The results indicated that the ditelluride exchange between (PCLTe)2 and diphenyl ditelluride ((PhTe)2) could occur spontaneously in the dark at room temperature without any external stimuli and the equilibrium of the reaction could be reached immediately. The dynamic exchange between (PCLTe)2 and (PTMCTe)2 was confirmed by 125Te-NMR spectrum and MALDI-TOF mass, which could occur spontaneously without any external stimuli. The results of MALDI-TOF mass showed that a di-block polymer (PTMCTeTePCL) was formed during the exchange process. The tensile test results indicated that the tensile strength and the elongation of PCL/PTMC composite were 3.07 MPa and 38.26%, respectively. However, as for (PCLTe)2/(PTMCTe)2 composite, the tensile strength and the elongation were increased to 5.22 MPa and 80.51%, respectively. The scanning electron microscopy images showed that the compatibility between (PCLTe)2 and (PTMCTe)2 was significantly improved comparing with the PCL/PTMC composite. The results indicated that the ditelluride exchange had a great effect on the properties of (PCLTe)2/(PTMCTe)2 composite. This study developed the ditelluride-related dynamic chemistry and promoted the application of dynamic covalent polymers.
  • 加载中
    1. [1]

      Maeda T, Otsuka H, Takahara A. Prog Polym Sci, 2009, 34: 581 − 604

    2. [2]

      Garcia F, Smulders M M. J Polym Sci, Part A: Polym Chem, 2016, 54: 3551 − 3577

    3. [3]

      Roy N, Bruchmann B, Lehn J M. Chem Soc Rev, 2015, 44: 3786 − 3807

    4. [4]

      Jin Y, Yu C, Denman R J, Zhang W. Chem Soc Rev, 2013, 42: 6634 − 6654

    5. [5]

      Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F. Angew Chem Int Ed, 2002, 41: 898 − 952

    6. [6]

    7. [7]

      Feng L, Yu Z, Bian Y, Lu J, Shi X, Chai C. Polymer, 2017, 124: 48 − 59

    8. [8]

    9. [9]

      Cash J J, Kubo T, Bapat A P, Sumerlin B S. Macromolecules, 2015, 48: 2098 − 2106

    10. [10]

      Cromwell O R, Chung J, Guan Z. J Am Chem Soc, 2015, 137: 6492 − 6495

    11. [11]

      Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q. Chem Mater, 2014, 26: 2038 − 2046

    12. [12]

      Xu W M, Rong M Z, Zhang M Q. J Mater Chem A, 2016, 4: 10683 − 10690

    13. [13]

      Pepels M, Filot I, Klumperman B, Goossens H. Polym Chem, 2013, 4: 4955 − 4965

    14. [14]

      Fritz U F, Delius M. Chem Commun, 2016, 52: 6363 − 6366

    15. [15]

      Ji S, Cao W, Yu Y, Xu H. Angew Chem Int Ed, 2014, 53: 6781 − 6785

    16. [16]

      Kildahl N K. J Chem Educ, 1995, 72: 423 − 424

    17. [17]

      Granger P, Chapelle S, Mcwhinnie W R, Rubaie A. J Organomet Chem, 1981, 220: 149 − 158

    18. [18]

      Kumar A, Singh A K. Inorg Chem Commun, 2007, 10: 1315 − 1317

  • 加载中
    1. [1]

      Changjie Yin Boyu Wang Dantong Qiao Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046

    2. [2]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    8. [8]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    9. [9]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(238)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return