Citation: Wen Tang, Kan Yue, Stephen Z. D. Cheng. Molecular Topology Effects in Self-assembly of Giant Surfactants[J]. Acta Polymerica Sinica, ;2018, 0(8): 959-972. doi: 10.11777/j.issn1000-3304.2018.18102 shu

Molecular Topology Effects in Self-assembly of Giant Surfactants

  • Self-assembly of block copolymers, which are composed of covalently connected incompatible polymer chains, can result in various ordered structures at the nanometer scale. This phenomenon, widely known as the microphase separation of block copolymers, may provide a technological platform for the development of next-generation nanopatterning techniques based on the " top-down” strategy. During the past decade, a unique class of novel amphiphilic macromolecules termed as giant surfactants have been reported, which are constructed from selected building blocks of cluster-like molecules having three-dimensional rigid conformations and nanometer sizes. By combining different " click-type” reactions, a highly efficient and modular synthetic method has been developed to prepare covalent conjugates of these molecular clusters and polymer chains. The resulting giant surfactants can be viewed as structural analogues of common block copolymers, and similarly, they also display interesting self-assembly behaviors both in solutions and in bulk. Herein, recent advances on the study of self-assembly of giant surfactants are summarized, with a particular emphasis on the molecular topology effects that can significantly change their self-assembly behaviors. As revealed by small angle X-ray scattering and transmission electron microscopy techniques, giant surfactants were able to self-assemble in bulk to form a series of highly ordered nanostructures with feature sizes below 10 nm or even 5 nm, with clearly shifted phase boundaries. More importantly, through rational molecular design to tune the molecular topology of giant surfactants, formation of some unusual nanostructures driven by molecular topological variations was achieved. Typical examples include several unconventional spherical phases, such as the Frank-Kasper A15 phase, the Frank-Kasper σ phase, and a quasicrystalline spherical phase, which were observed in multitailed giant surfactants, and a highly asymmetric lamellar phase formed by self-assembly of multiheaded giant surfactants. It is believed that these studies provide not only insights towards understanding the molecular topological effects in macromolecular self-assembly, but also experimental foundation for the development of block copolymer lithography that can afford nanostructures with sub-10-nm feature sizes.
  • 加载中
    1. [1]

      Cheng S Z D. J Polym Sci, Part B: Polym Phys, 2005, 43: 3361-3364  doi: 10.1002/(ISSN)1099-0488

    2. [2]

      Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47: 2-12  doi: 10.1021/ma401762n

    3. [3]

      Bates F S, Fredrickson G H. Phys Today, 1999, 52: 32-38

    4. [4]

      Bates F S, Fredrickson G H. Annu Rev Phys Chem, 1990, 41: 525-557  doi: 10.1146/annurev.pc.41.100190.002521

    5. [5]

      Zhang L, Eisenberg A. Science, 1995, 268: 1728-1731  doi: 10.1126/science.268.5218.1728

    6. [6]

      Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett, 2015, 4: 1044-1050  doi: 10.1021/acsmacrolett.5b00472

    7. [7]

      Zhang W B, Yu X, Wang C L, Sun H J, Hsieh I F, Li Y, Dong X H, Yue K, Van Horn R, Cheng S Z D. Macromolecules, 2014, 47: 1221-1239  doi: 10.1021/ma401724p

    8. [8]

      Yin G Z, Zhang W B, Cheng S Z D. Sci China Chem, 2017, 60: 338-352  doi: 10.1007/s11426-016-0436-x

    9. [9]

    10. [10]

      Yu X F, Zhong S, Li X P, Tu Y F, Yang S G, Van Horn R M, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D. J Am Chem Soc, 2010, 132: 16741-16744  doi: 10.1021/ja1078305

    11. [11]

      Yu X, Zhang W B, Yue K, Li X, Liu H, Xin Y, Wang C L, Wesdemiotis C, Cheng S Z D. J Am Chem Soc, 2012, 134: 7780-7787  doi: 10.1021/ja3000529

    12. [12]

      Yu X, Li Y, Dong X H, Yue K, Lin Z, Feng X, Huang M, Zhang W B, Cheng S Z D. J Polym Sci, Part B: Polym Phys, 2014, 52: 1309-1325  doi: 10.1002/polb.v52.20

    13. [13]

      Yu X, Yue K, Hsieh I F, Li Y, Dong X H, Liu C, Xin Y, Wang H F, Shi A C, Newkome G R, Ho R M, Chen E Q, Zhang W B, Cheng S Z D. Proc Natl Acad Sci, 2013, 110: 10078-10083  doi: 10.1073/pnas.1302606110

    14. [14]

      Yue K, Liu C, Huang M, Huang J, Zhou Z, Wu K, Liu H, Lin Z, Shi A C, Zhang W B, Cheng S Z D. Macromolecules, 2017, 50: 303-314  doi: 10.1021/acs.macromol.6b02446

    15. [15]

      Yue K, He J, Liu C, Huang M, Dong X H, Guo K, Ni P, Wesdemiotis C, Quirk R, Cheng S D, Zhang W B. Chinese J Polym Sci, 2013, 31: 71-82  doi: 10.1007/s10118-013-1215-x

    16. [16]

      Yue K, Liu C, Guo K, Wu K, Dong X H, Liu H, Huang M, Wesdemiotis C, Cheng S Z D, Zhang W B. Polym Chem, 2013, 4: 1056-1067  doi: 10.1039/C2PY20881D

    17. [17]

      Yue K, Huang M, Marson R L, He J, Huang J, Zhou Z, Wang J, Liu C, Yan X, Wu K, Guo Z, Liu H, Zhang W, Ni P, Wesdemiotis C, Zhang W B, Glotzer S C, Cheng S Z D. Proc Natl Acad Sci, 2016, 113: 14195-14200  doi: 10.1073/pnas.1609422113

    18. [18]

      Huang M, Yue K, Huang J, Liu C, Zhou Z, Wang J, Wu K, Shan W, Shi A C, Cheng S Z D. ACS Nano, 2018, 12: 1868-1877  doi: 10.1021/acsnano.7b08687

    19. [19]

      Li Y, Dong X H, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk R P, Zhang W B, Cheng S Z D. ACS Macro Lett, 2012, 1: 834-839  doi: 10.1021/mz300196x

    20. [20]

      He J, Yue K, Liu Y, Yu X, Ni P, Cavicchi K A, Quirk R P, Chen E Q, Cheng S Z D, Zhang W B. Polym Chem, 2012, 3: 2112-2120  doi: 10.1039/c2py20101a

    21. [21]

      Yue K, Liu C, Guo K, Yu X, Huang M, Li Y, Wesdemiotis C, Cheng S Z D, Zhang W B. Macromolecules, 2012, 45: 8126-8134  doi: 10.1021/ma3013256

    22. [22]

      Li Y, Dong X H, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang W B, Cheng S Z D. Polymer, 2017, 125: 303-329  doi: 10.1016/j.polymer.2017.08.008

    23. [23]

      Su H, Li Y, Yue K, Wang Z, Lu P, Feng X, Dong X H, Zhang S, Cheng S Z D, Zhang W B. Polym Chem, 2014, 5: 3697-3706  doi: 10.1039/c4py00107a

    24. [24]

      Li Y, Su H, Feng X, Yue K, Wang Z, Lin Z, Zhu X, Fu Q, Zhang Z, Cheng S Z D, Zhang W B. Polym Chem, 2015, 6: 827-837  doi: 10.1039/C4PY01360C

    25. [25]

      Su H, Zheng J, Wang Z, Lin F, Feng X, Dong X H, Becker M L, Cheng S Z D, Zhang W B, Li Y. ACS Macro Lett, 2013, 2: 645-650  doi: 10.1021/mz4002723

    26. [26]

      Wang X M, Guo Q Y, Han S Y, Wang J Y, Han D, Fu Q, Zhang W B. Chem Eur J, 2015, 21: 15246-15255  doi: 10.1002/chem.v21.43

    27. [27]

      Han S Y, Wang X M, Shao Y, Guo Q Y, Li Y, Zhang W B. Chem Eur J, 2016, 22: 6397-6403  doi: 10.1002/chem.v22.18

    28. [28]

      Wang X M, Shao Y, Xu J, Jin X, Shen R H, Jin P F, Shen D W, Wang J, Li W, He J, Ni P, Zhang W B. Macromolecules, 2017, 50: 3943-3953  doi: 10.1021/acs.macromol.7b00503

    29. [29]

      Wang X M, Shao Y, Jin P F, Jiang W, Hu W, Yang S, Li W, He J, Ni P, Zhang W B. Macromolecules, 2018, 51: 1110-1119  doi: 10.1021/acs.macromol.7b02383

    30. [30]

      Zhang W B, Tu Y, Ranjan R, Van Horn R M, Leng S, Wang J, Polce M J, Wesdemiotis C, Quirk R P, Newkome G R, Cheng S Z D. Macromolecules, 2008, 41: 515-517  doi: 10.1021/ma702345r

    31. [31]

      Lin Z, Lu P, Hsu C H, Sun J, Zhou Y, Huang M, Yue K, Ni B, Dong X H, Li X, Zhang W B, Yu X, Cheng S Z D. Macromolecules, 2015, 48: 5496-5503  doi: 10.1021/acs.macromol.5b00741

    32. [32]

      Dong X H, Ni B, Huang M, Hsu C H, Chen Z, Lin Z, Zhang W B, Shi A C, Cheng S Z D. Macromolecules, 2015, 48: 7172-7179  doi: 10.1021/acs.macromol.5b01661

    33. [33]

      Dong X H, Ni B, Huang M, Hsu C H, Bai R, Zhang W B, Shi A C, Cheng S Z D. Angew Chem Int Ed, 2016, 55: 2459-2463  doi: 10.1002/anie.201510524

    34. [34]

      Huang M, Yue K, Wang J, Hsu C H, Wang L, Cheng S Z D. Sci China Chem, 2018, 61: 33-45

    35. [35]

      Shao Y, Yin H, Wang X M, Han S Y, Yan X, Xu J, He J, Ni P, Zhang W B. Polym Chem, 2016, 7: 2381-2388  doi: 10.1039/C6PY00241B

    36. [36]

      Huang M, Hsu C H, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang W B, Yue K, Cheng S Z D. Science, 2015, 348: 424-428  doi: 10.1126/science.aaa2421

    37. [37]

      Lin Z, Yang X, Xu H, Sakurai T, Matsuda W, Seki S, Zhou Y, Sun J, Wu K Y, Yan X Y, Zhang R, Huang M, Mao J, Wesdemiotis C, Aida T, Zhang W, Cheng S Z D. J Am Chem Soc, 2017, 139: 18616-18622  doi: 10.1021/jacs.7b10193

    38. [38]

      Feng X, Zhang R, Li Y, Hong Y L, Guo D, Lang K, Wu K Y, Huang M, Mao J, Wesdemiotis C, Nishiyama Y, Zhang W, Zhang W, Miyoshi T, Li T, Cheng S Z D. ACS Cent Sci, 2017, 3: 860-867  doi: 10.1021/acscentsci.7b00188

    39. [39]

      Ren L J, Wu H, Hu M B, Wei Y H, Lin Y, Wang W. Chem Asian J, 2018, DOI: 10.1002/asia.201800005  doi: 10.1002/asia.201800005

    40. [40]

      Ma C, Wu H, Huang Z H, Guo R H, Hu M B, Kübel C, Yan L T, Wang W. Angew Chem Int Ed, 2015, 54: 15699-15704  doi: 10.1002/anie.201507237

    41. [41]

      Hou X S, Zhu G L, Ren L J, Huang Z H, Zhang R B, Ungar G, Yan L T, Wang W. J Am Chem Soc, 2018, 140: 1805-1811  doi: 10.1021/jacs.7b11324

    42. [42]

      Liu H, Hsu C H, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang W B, Yue K, Cheng S Z D. J Am Chem Soc, 2014, 136: 10691-10699  doi: 10.1021/ja504497h

    43. [43]

      Liu H, Luo J, Shan W, Guo D, Wang J, Hsu C H, Huang M, Zhang W, Lotz B, Zhang W B, Liu T, Yue K, Cheng S Z D. ACS Nano, 2016, 10: 6585-6596  doi: 10.1021/acsnano.6b01336

    44. [44]

      Zhang W, Lu X, Mao J, Hsu C H, Mu G, Huang M, Guo Q, Liu H, Wesdemiotis C, Li T, Zhang W B, Li Y, Cheng S Z D. Angew Chem Int Ed, 2017, 56: 15014-15019  doi: 10.1002/anie.201709354

    45. [45]

      Materials Genome Initiative for Global Competitiveness. Washington, D C: National Science and Technology Council, 2011 (https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf, accessed on May 20th, 2018).

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    4. [4]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    12. [12]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    17. [17]

      Wen Tang Luyu Sui Qian Chen Jun Shao Xinwen Peng Jianwen Jiang Shuiliang Chen . Project-based Teaching of “the Condensed State of Polymers”: Unveiling the Lithium-Ion Battery Separator. University Chemistry, 2025, 40(11): 115-126. doi: 10.12461/PKU.DXHX202412108

    18. [18]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

Metrics
  • PDF Downloads(0)
  • Abstract views(190)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return