Citation: Dan Xie, Chao Teng, Lei Jiang. Green Fabrication of Flexible, Thermally Conductive Graphene-carbonized Chinese Art Paper Composite Film[J]. Acta Polymerica Sinica, ;2018, 0(11): 1460-1466. doi: 10.11777/j.issn1000-3304.2018.18087 shu

Green Fabrication of Flexible, Thermally Conductive Graphene-carbonized Chinese Art Paper Composite Film

  • Corresponding author: Chao Teng, tengchao@qust.edu.cn
  • Received Date: 21 March 2018
    Available Online: 24 July 2018

  • Highly thermal conductive and flexible materials are urgently required in the heat management of high-power electronic devices. In this work, a composite film with these required properties, based on graphene and carbonized Chinese art paper, is prepared through a green route. Graphite is directly exfoliated in water in the presence of polyvinylpyrrolidone surfactant into high-quality graphene through a combination of large and small ball milling. The exfoliated graphene is filled into the porous network of the flexible superhydrophilic Chinese art paper through immersion absorption. After drying, the immersed Chinese art paper is mechanically compressed and carbonized at high temperature, leading to a composite film of graphene and carbonized Chinese art paper. TEM shows that the exfoliated graphene nanoplatelets is of layered structure and has a diameter in the range of several hundreds of nanometers to several micrometers. Raman spectroscopy proves that the exfoliated graphene nanoplatelet has a few defects with a low intensity ratio of D peak to G peak (0.25). SEM image shows that the graphene nanoplatelets filled in Chinese art paper are interconnected, which provides continuous channels for phonon transport. Mechanical compression increases the mass density of the composite film and improves the contact between the graphene nanoplatelets. Raman spectroscopy proves that annealing at high temperature decreases the amount of SP3 hybrid carbon. As a result, the resultant composite film of graphene and carbonized Chinese art paper shows excellent thermal conductivity of 258 W/mK, superior to previously reported RGO-polymer composites (0.8 – 19.5 W/mK). The interconnected three-dimensional microfiber network of the carbonized Chinese art paper imparts the composite film with good flexibility, superior to that of the pure graphene film. After 100 bending cycles, the electrical resistance of the composite film remains practically unchanged. Compared with the conventional chemical oxidation-thermal reduction, the present route is environment-friendly, which avoids the use of strong oxidizing acids and does not generate acidic waste water.
  • 加载中
    1. [1]

      Zhang Y, Han H, Wang N, Zhang P, Fu Y, Murugesan M, Edwards M, JeppsonK, Volz S, Liu J. Adv Funct Mater, 2015, 25(28): 4430 − 4435

    2. [2]

      Balandin A A. Nat Mater, 2011, 10(8): 569 − 581

    3. [3]

      Guo Y, Li K, Hou C, Li Y, Zhang Q, Wang H. ACS Appl Mater Interfaces, 2016, 8(7): 4676 − 4683

    4. [4]

      Zhang L, Zhang G, Liu C, Fan S. Nano Lett, 2012, 12(9): 4848 − 4852

    5. [5]

      Song N J, Chen C M, Lu C, Liu Z, Kong Q Q, Cai R. J Mater Chem A, 2014, 2(39): 16563 − 16568

    6. [6]

      Xin G, Yao T, Sun H, Scott S M, Shao D, Wang G, Lian J. Science, 2015, 349(6252): 1083 − 1087

    7. [7]

      Jang W, Chen Z, Bao W, Lau C N, Dames C. Nano Lett, 2010, 10(10): 3909 − 3913

    8. [8]

      Du X, Skachko I, Barker A, Andrei E Y. Nat Nanotechnol, 2008, 3(8): 491 − 495

    9. [9]

      Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett, 2008, 8(3): 902 − 907

    10. [10]

      Xin G, Sun H, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T, Lian J. Adv Mater, 2014, 26(26): 4521 − 4526

    11. [11]

      Shen B, Zhai W, Zheng W. Adv Funct Mater, 2014, 24(28): 4542 − 4548

    12. [12]

      Kong Q Q, Liu Z, Gao J G, Chen C M, Zhang Q, Zhou G, Tao Z C, Zhang X H, Wang M Z, Li F, Cai R. Adv Funct Mater, 2014, 24(27): 4222 − 4228

    13. [13]

      Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C. Adv Mater, 2017, 29(27): 1700589

    14. [14]

      Varrla E, Paton K R, Backes C, Harvey A, Smith R J, McCauley J, Coleman J N. Nanoscale, 2014, 6(20): 11810 − 11819

    15. [15]

      Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, CoelhoJ, O’Brien S E, McGuire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Nat Mater, 2014, 13(6): 624 − 630

    16. [16]

      Stevens B, Guin T, Sarwar O, John A, Paton K R, Coleman J N, Grunlan J C. Macromol Rapid Commun, 2016, 37(22): 1790 − 1794

    17. [17]

      Teng C, Xie D, Wang J, Yang Z, Ren G, Zhu Y. Adv Funct Mater, 2017, 27(20): 1700240

    18. [18]

      Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G. J Mater Chem, 2010, 20(28): 5817 − 5819

    19. [19]

      Buzaglo M, Bar I P, Varenik M, Shunak L, Pevzner S, Regev O. Adv Mater, 2017, 29(8): 1603528

    20. [20]

      Wen Y, Wu M, Zhang M, Li C, Shi G. Adv Mater, 2017, 29(41): 1702831

    21. [21]

      Lotya M, King P J, Khan U, De S, Coleman J N. ACS Nano, 2010, 4(6): 3155 − 3162

    22. [22]

      Khan U, O’Neill A, Lotya M, De S, Coleman J N. Small, 2010, 6(7): 864 − 871

    23. [23]

      Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat Nanotechnol, 2008, 3(2): 101 − 105

    24. [24]

      Wang G, Xu W, Xu F, Shen W, Song W. Materials Res Express, 2017, 4(11): 116405

    25. [25]

      Denis L N, Alexander A B. Rep Prog Phys, 2017, 80(3): 036502

    26. [26]

      Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Koo C M. Carbon, 2016, 101: 120 − 128

    27. [27]

      Song N, Jiao D, Ding P, Cui S, Tang S, Shi L. J Mater Chem C, 2016, 4(2): 305 − 314

    28. [28]

      Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q. J Mater Chem C, 2017, 5(15): 3748 − 3756

    29. [29]

      Luo F, Wu K, Shi J, Du X, Li X, Yang L, Lu M. J Mater Chem A, 2017, 5(35): 18542 − 18550

    30. [30]

      Cho E C, Huang J H, Li C P, Chang-Jian C W, Lee K C, Hsiao Y S, Huang J H. Carbon, 2016, 102: 66 − 73

    31. [31]

      Wang F, Drzal L T, Qin Y, Huang Z. J Mater Sci, 2014, 50(3): 1082 − 1093

    32. [32]

      Li A, Zhang C, Zhang Y F. Compos Part A: Appl Sci Manufac, 2017, 101: 108 − 114

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    4. [4]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    14. [14]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    18. [18]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(0)
  • Abstract views(224)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return