Citation: Lun-jun Qu, Li-shuang Tang, Si-wei Liu, Zhen-guo Chi, Xu-dong Chen, Yi Zhang, Jia-rui Xu. Preparation and Photoluminescent Properties of Polyimides Containing Triphenylamine Pendant Group[J]. Acta Polymerica Sinica, ;2018, 0(11): 1430-1441. doi: 10.11777/j.issn1000-3304.2018.18075 shu

Preparation and Photoluminescent Properties of Polyimides Containing Triphenylamine Pendant Group

  • Corresponding author: Yi Zhang, ceszy@mail.sysu.edu.cn
  • Received Date: 7 March 2018
    Available Online: 1 August 2018

  • Two triphenylamines (TPA) based diamine monomers, TPCDA and TPNDA, were successfully designed and synthesized, which were of similar chemical structures but different electronic effects. Both TPCDA and TPNDA exhibit aggregation induced emission (AIE) phenomenon, and show intense emission at 395 and 447 nm in the solid state, respectively. They were polymerized with two dianhydrides (BPADA and HQDPA), respectively, to form four novel polyimides with excellent thermal stability. The fluorescence of the polyimides derived from TPNDA, TPNBPI and TPNHPI, is totally quenched. However, for the TPCDA-based polyimides, TPCBPI and TPCHPI show bright orange photoluminescence at 565 and 585 nm in their films, respectively. By increasing the concentration of TPCBPI and TPNBPI in N-methyl pyrrolidone (NMP) solution, their emission changes from non-luminescence to bright blue emission, followed by a red-shift due to the formation of strong intermolecular charge transfer, and they show green emission at 504 nm and 508 nm at the concentration of 4 mg·mL−1. The photoluminescence of TPCDA-based polyimides is similar to the composite system, where TPA is doped in a polyimide with the same main-chain structure. However, the theoretical calculations for the model units of the resulting polyimides show that both the conjugated TPNDA-based system and the unconjugated TPCDA-based system are non-luminescent due to an inhibited transition from HOMO to LUMO level. Further studies show that the luminescent properties of the TPCDA-based polyimides are owing to the following two reasons: (1) Compared with the TPNDA-based system, the sp3 hybridized carbon atom in the TPCDA-based system separates the TPA structure from the polyimide main chain, which dispels the influence of the intramolecular charge transfer effect of the polyimide on TPA; (2) The relatively independent TPA moieties can have strong intermolecular charge transfer interaction with the polyimide main chains, which leads this system to exhibiting a strong orange fluorescence with a 184 nm red-shift of the max emission wavelength. This work demonstrates a simple strategy to develop aromatic polyimides with high fluorescence for potential applications in organic photoelectric field.
  • 加载中
    1. [1]

      Kuik M, Wetzelaer G J A H, Nicolai H T, Craciun N I, de Leeuw D M, Blom P W M. Adv Mater, 2014, 26(4): 512 − 531

    2. [2]

      Guan X, Zhang K, Huang F, Bazan G C, Cao Y. Adv Funct Mater, 2012, 22(13): 2846 − 2854

    3. [3]

      Ellmer K. Nat Photon, 2012, 6(12): 808 − 816

    4. [4]

      Kim F S, Ren G Q, Jenekhe S A. Chem Mater, 2011, 23(3): 682 − 732

    5. [5]

      Yu L, Liu J, Hu S J, He R F, Yang W, Wu H B, Peng J B, Xia R D, Bradley D D C. Adv Funct Mater, 2013, 23(35): 4366 − 4376

    6. [6]

      Mazzio K A, Luscombe C K. Chem Soc Rev, 2015, 44(1): 78 − 90

    7. [7]

      Gao X K, Hu Y B. J Mater Chem C, 2014, 2(17): 3099 − 3117

    8. [8]

      Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907 − 974

    9. [9]

      Feng L H, Chen Z B. Polymer, 2005, 46(11): 3952 − 3956

    10. [10]

      Mal'tsev E I, Brusentseva M A, Lypenko D A, Berendyaev V I, Kolesnikov V A, Kotov B V, Vannikov A V. Polym Adv Technol, 2000, 11(7): 325 − 329

    11. [11]

      Ng W Y, Gong X, Chan W K. Chem Mater, 1999, 11(4): 1165 − 1170

    12. [12]

      Hsu S C, Whang W T, Chao C S. Thin Solid Films, 2007, 515(17): 6943 − 6948

    13. [13]

      Yang Tingting(杨婷婷), Zhou Zhuxin(周竹欣), Zhang Yi(张艺), Liu Siwei(刘四委), Chi Zhenguo(池振国), Xu Jiarui(许家瑞). Acta Polymprica Sinica(高分子学报), 2017, (3): 411-428

    14. [14]

      Yen H J, Chen C J, Liou G S. Adv Funct Mater, 2013, 23(42): 5307 − 5316

    15. [15]

      Kanosue K, Shimosaka T, Wakita J, Ando S. Macromolecules, 2015, 48(6): 1777 − 1785

    16. [16]

      Thelakkat M, Posch P, Schmidt H W. Macromolecules, 2001, 34(21): 7441 − 7447

    17. [17]

      Wu J H, Liou G S. Polym Chem, 2015, 6(29): 5225 − 5232

    18. [18]

      Yen H J, Chen C J, Liou G S. Chem Commun, 2013, 49(6): 630 − 632

    19. [19]

      Zhou Z X, Zhang Y, Liu S W, Chi Z G, Chen X D, Xu J R. J Mater Chem C, 2016, 4(44): 10509 − 10517

    20. [20]

      Zhou Z X, Huang W X, Long Y B, Chen Y Q, Yu Q X, Zhang Y, Liu S W, Chi Z G, Chen X D, Xu J R. J Mater Chem C, 2017, 5(33): 8545 − 8552

    21. [21]

      Qu L J, Huang S D, Zhang Y, Chi Z G, Liu S W, Chen X D, Xu J R. J Mater Chem C, 2017, 5(26): 6457 − 6466

    22. [22]

      Qu L J, Tang L S, Bei R X, Zhao J, Chi Z G, Liu S W, Chen X D, Aldred M P, Zhang Y, Xu J R. ACS Appl Mater Interfaces, 2018, 10(14): 11430 − 11435

    23. [23]

      Eastmond G C, Paprotny J, Pethrick R A, Santamaria-Mendia F. Macromolecules, 2006, 39(22): 7534 − 7548

    24. [24]

      Cheng S H, Hsiao S H, Su T H, Liou G S. Macromolecules, 2005, 38(2): 307 − 316

    25. [25]

      Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem Commun, 2001, 18(18): 1740 − 1741

    26. [26]

      Hong Y N, Lam J W Y, Tang B Z. Chem Commun, 2009, 40(45): 4332 − 4353

    27. [27]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem Rev, 2015, 115(21): 11718 − 11940

    28. [28]

      Liang Z Q, Wang X M, Dai G L, Ye C Q, Zhou Y Y, Tao X T. New J Chem, 2015, 39(11): 8874 − 8880

    29. [29]

      Tian G J, Huang W, Cai S Y, Zhou H T, Li B, Wang Q C, Su J H. RSC Adv, 2014, 4(73): 38939 − 38942

    30. [30]

      Song Q B, Chen K, Sun J W, Wang Y S, Ouyang M, Zhang C. Tetrahedron Lett, 2014, 55(20): 3200 − 3205

    31. [31]

      Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907 − 974

    32. [32]

      Wakita J, Sekino H, Sakai K, Urano Y, Ando S. J Phys Chem B, 2009, 113(46): 15212 − 15224

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    4. [4]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    8. [8]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    9. [9]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    17. [17]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    18. [18]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

Metrics
  • PDF Downloads(0)
  • Abstract views(189)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return