Citation: Guang-zhao Zhang. Hybrid Copolymerization[J]. Acta Polymerica Sinica, ;2018, 0(6): 668-673. doi: 10.11777/j.issn1000-3304.2018.18074 shu

Hybrid Copolymerization

  • Corresponding author: Guang-zhao Zhang, msgzzhang@scut.edu.cn
  • Received Date: 7 March 2018
    Revised Date: 27 March 2018
    Available Online: 13 April 2018

  • Hybrid copolymerization is the process where two or more unlike monomers with different polymerizable groups polymerize together. It is revolutionary to the conventional copolymerization where the monomers have the same polymerizable groups. Hybrid copolymerization provides new routes for synthesis of polymers and gives great possibility to produce polymers with novel properties. However, because the unlike monomers follow different polymerization mechanisms and their reactivities are quite different, hybrid copolymerization has long been a challenge. Fortunately, some breakthroughs have been made in vinyl addition and ring-opening hybrid copolymerization since 1980’s. Bailey et al. first reported the radical ring-opening hybrid copolymerization of 2-methylene-1,3-dioxepane (MDO) with vinyl monomers such as styrene (St) and methyl methacrylate (MMA) in 1982. Such a copolymerization can yield relatively high molecular weight polymers (104 − 10 5), but the cyclic monomers are only limited to cyclic ketene acetals. Zwitteronic hybrid copolymerization was reported later but it only produces oligomers. With the development of organocatalysis, anionic and cationic hybrid copolymerizations were studied in recent years. Cationic hybrid copolymerization or the so-called concurrent cationic copolymerization of isobutylene oxide and vinyl ether was reported in 2013. The copolymerization is also applicable to other cyclic monomers with epoxides, but it produces polymers with a relatively low molecular weight (103 − 10 4). In 2012, anionic hybrid copolymerization of ε-caprolactone (CL) and methyl methacrylate (MMA) was reported by our laboratory for the first time. Such a copolymerization is applicable to many common monomers including cyclic ester or cyclic ether and vinyl esters. The polymer synthesized by anionic hybrid copolymerization has a high molecular weight (104 − 10 5) so that it can be used in different materials. Actually, clickable or hybranched biodegradable polymers were already prepared via the copolymerization. Particularly, it was used to develop high performance biodegradable polymers for marine anti-biofouling. The work describes the progress in hybrid copolymerization.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Hong X Y, Chen Q D, Chen M, Yu R Z, Chen J. J Appl Polym Sci, 2001, 79:1195-1200.  doi: 10.1002/(ISSN)1097-4628

    4. [4]

      Lin Y, Stansbury JW. Polymer 2003, 44:4781-4789.  doi: 10.1016/S0032-3861(03)00469-5

    5. [5]

      Crivello J V. J Polym Sci Polym Chem Ed, 2007, 45:3759-3769  doi: 10.1002/(ISSN)1099-0518

    6. [6]

      Asandei A D, Saha G, Polym Prepr Am Chem Soc Div Polym Chem, 2004, 45:999-1000

    7. [7]

      Kong L Z, Pan C Y, Macromol Chem Phys, 2007, 208:2686-2697  doi: 10.1002/(ISSN)1521-3935

    8. [8]

      Jia Z F, Li G L, Zhu Q, Yan D Y, Zhu X Y, Chen H, Wu J L, Tu C L, Sun J. Chem Eur J, 2009, 15:7593-7600  doi: 10.1002/chem.v15:31

    9. [9]

      Simionescu C I, Grigoras M, Bicu E, Onofrel G. Polym Bull,1985, 14:79-83

    10. [10]

      Rivas B L, Pizarro G del C, Canessa G S, Polym Bull,1988, 19:123-128

    11. [11]

      Hagiwara T, Takeda M, Hamana H, Narita T. Macroinolecules, 1989, 22:2025-2026  doi: 10.1021/ma00194a090

    12. [12]

      Asenjo-Sanz I, Veloso A, Miranda J I, Alegría A, Pomposo J A, Barroso-Bujans F, Macromolecules, 2015, 48:1664−1672  doi: 10.1021/acs.macromol.5b00096

    13. [13]

      Asenjo-Sanz I, Veloso A, Miranda J I, Pomposo J A, Barroso-Bujans F, Polym Chem, 2014, 5:6905-6908  doi: 10.1039/C4PY00574K

    14. [14]

      Li A, Lu L, Li X, He L L, Do C W, Garno J C, Zhang D H, Macromolecules, 2016, 49:1163-1171  doi: 10.1021/acs.macromol.5b02611

    15. [15]

      Steinkoenig J, de Jongh P A J M, Haddleton D M, Goldmann A S, Barner-Kowollik C, Kempe K. Macromolecules, 2018, 51: 318-327  doi: 10.1021/acs.macromol.7b02608

    16. [16]

      Brown H A, Xiong S L, Medvedev G A, Young A. Chang Y A, Abu-Omar M A, Caruthers J M, Waymouth R M. Macromolecules, 2014, 47:2955-2963  doi: 10.1021/ma500395j

    17. [17]

      Culkin D A, Jeong W, Csihony S, Gomez E D, Balsara N P, Hedrick J L, Waymouth R M, Angew Chem Int Ed, 2007, 46:2627-2630  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Brown H A, Chang Y A, Waymouth R M. J Am Chem Soc, 2013, 135:18738−18741  doi: 10.1021/ja409843v

    19. [19]

      Brown H A, Waymouth R M. Acc Chem Res, 2013, 46:2585-2596  doi: 10.1021/ar400072z

    20. [20]

      Shin E J, Brown H A, Gonzalez S, Jeong W, Hedrick J L, Waymouth R M. Angew Chem Int Ed, 2011, 50: 6388-6391  doi: 10.1002/anie.201101853

    21. [21]

      Takahashi T. J Polym Sci, Part A: Polym Chem, 1968, 6:403-414  doi: 10.1002/pol.1968.150060210

    22. [22]

      Bailey W J. Polym J, 1985, 17:85-95  doi: 10.1295/polymj.17.85

    23. [23]

      Bailey W J, Ni Z, Wu S R. J Polym Sci Polym Chem, 1982, 20:3021-3030.  doi: 10.1002/pol.1982.170201101

    24. [24]

      Endo T, Okawara M, Bailey W J, Azuma K, Nate K, Yokono H. J Polym Sci Polym Lett, 1983 21:373-380  doi: 10.1002/pol.1983.130210510

    25. [25]

      Wei Y, Connors E J, Jia X R, Wang C. J Polym Sci Part A: Polym Chem. 1998, 36:761-771  doi: 10.1002/(ISSN)1099-0518

    26. [26]

      Ganda S, Jiang Y Y, Thomas D S, Eliezar J, Stenzel M H. Macromolecules, 2016, 49:4136-4146.  doi: 10.1021/acs.macromol.6b00266

    27. [27]

      Pan C Y, Lou X D. Macromol Chem Phys, 2000, 201:1115-112  doi: 10.1002/(ISSN)1521-3935

    28. [28]

      Yuan J Y, Pan C Y, Eur Polym J, 2002, 38:2069-2076  doi: 10.1016/S0014-3057(02)00085-X

    29. [29]

      Hedir G G, Bell C A, Ieong N S, Chapman E, Collins I R, O’Reilly R K, Dove A P Macromolecules, 2014, 47:2847-2852  doi: 10.1021/ma500428e

    30. [30]

      Agarwal S, Ren L Q. Macromolecules, 2009, 42: 1574-1579  doi: 10.1021/ma802615f

    31. [31]

      Agarwal S, J Polym Res, 2006, 13: 403-412

    32. [32]

      Hedir G, Stubbs C, Aston P, Dove A P, Gibson M I. ACS Macro Lett, 2017, 6:1404-1408  doi: 10.1021/acsmacrolett.7b00905

    33. [33]

      Zhou X, Xie Q Y, Ma C F, Chen Z J, Zhang G Z, Ind Eng Chem Res, 2015, 54:9559-9565  doi: 10.1021/acs.iecr.5b01819

    34. [34]

      Yang H J, Xu J B, Pispas S, Zhang G Z. Macromolecules, 2012, 45:3312-3317  doi: 10.1021/ma300291q

    35. [35]

      Yang H J, Xu J B, Zhang G Z. Sci China Chem 2013, 56:1101-1104  doi: 10.1007/s11426-013-4868-y

    36. [36]

    37. [37]

      Yang H J, Ge J, Huang WY, Xue X Q, Chen J H, Jiang B B, Zhang G Z. RSC Adv, 2014, 4: 23377-23381  doi: 10.1039/C4RA00829D

    38. [38]

      Yang H J, Xu J B, Pispas S, Zhang G Z. RSC Adv, 2013, 3:6853-6858  doi: 10.1039/c3ra23422c

    39. [39]

      Xu J B, Yang H J, Zhang G Z. Macromol Chem Phys, 2013, 214:378-385  doi: 10.1002/macp.201200510

    40. [40]

      Zhang G Z, Ma C F. US patent 9,701,794 B2, 2007-7-11

    41. [41]

      Kanazawa A, Kanaoka S, Aoshima S. J Am Chem Soc 2013, 135:9330-9333  doi: 10.1021/ja404616c

    42. [42]

      Kanazawa A, Kanaoka S, Aoshima S. Macromolecules 2014, 47:6635-6644  doi: 10.1021/ma501707a

    43. [43]

      Shirouchi T, Kanazawa A, Kanaoka S, Aoshima S. Macromolecules 2016, 49:7184-7195  doi: 10.1021/acs.macromol.6b01565

    44. [44]

      Higuchi M, Kanazawa A, Aoshima S. ACS Macro Lett. 2017, 6:365-369.  doi: 10.1021/acsmacrolett.7b00095

    45. [45]

      Kanazawa A, Aoshima S. ACS Macro Lett. 2015, 4:783-787  doi: 10.1021/acsmacrolett.5b00365

    46. [46]

      Hu S Y, Zhao J P, Zhang G Z, Schlaad H. Prog Polym Sci, 2017, 74:34-77  doi: 10.1016/j.progpolymsci.2017.07.002

    47. [47]

      Song QL, Hu S Y, Zhao J P, Zhang G Z. Chinese J Polym Sci, 2017, 35(5): 581-601  doi: 10.1007/s10118-017-1925-6

  • 加载中
    1. [1]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    2. [2]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    5. [5]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    10. [10]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    11. [11]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    12. [12]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    13. [13]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    16. [16]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    19. [19]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    20. [20]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

Metrics
  • PDF Downloads(0)
  • Abstract views(232)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return