Citation: Rui-ying Zhao, Xu-qiang Jiang, Jun-feng Zheng, Xiao-qing Liu, Yan-shuang Xu, Shuang Yang, Er-qiang Chen. Columnar Phase of Side-chain Liquid Crystalline Polymers Based on “Multi-chain Column”[J]. Acta Polymerica Sinica, ;2018, 0(8): 973-986. doi: 10.11777/j.issn1000-3304.2018.18065 shu

Columnar Phase of Side-chain Liquid Crystalline Polymers Based on “Multi-chain Column”

  • Corresponding author: Er-qiang Chen, eqchen@pku.edu.cn
  • Received Date: 23 February 2018
    Revised Date: 26 March 2018

  • Side-chain liquid crystalline polymer (SCLCP) can form columnar liquid crystalline (LC) phases, in addition to the conventional nematic and smectic phase. For the SCLCP containing the discotic mesogenic group attached to the main-chain through a flexible spacer, the columnar phase relies on the assembly of the discotic mesogens. On the other hand, the SCLCP with extended conformation, such as mesogen-jacketed LC polymers and dendronized polymers, can exhibit the columnar phase based on the parallel packing of the cylindrical chains. In this case, " single chain column” is considered to be the building block of the columnar phase in general. Recently, our work on hemiphasmid SCLCP demonstrates that the " multi-chain column” is also important for the columnar phases of SCLCP. Hemiphasmid SCLCP possesses the hemiphasmid side-chain composed of a rod-like mesogen linked with a half-disk end group. It can readily self-organize into columnar phases with a pretty lager lattice parameter (e.g., 5 – 10 nm). It is found that the number of repeating units (Zrep) packed in a column stratum with a thickness of ~ 0.4 nm is surprisingly large. As an example, for the hexagonal columnar phase with the a parameter of ~ 6 nm, the value of Zrep is ~ 10. Squeezing a chain segment with 10 repeating units into the 0.4 nm-thick column stratum is physically unreasonable. The " unusual Zrep” indicates the existence of " multi-chain column” that consists of a bundle of chains (e.g., 4 – 5 chains) laterally associated together. We synthesized a series of hemiphasmid SCLCPs with different chemical structures. Various main-chains have been employed, including polystyrene, poly(methacrylate), polyacetylene, and polynorbornene. The hemiphasmid moieties can invoke different rod-like mesogens, and can be attached to the main-chain directly or via a flexible spacer. For all the samples obtained, we have verified that the " multi-chain column” is applicable. The formation of " multi-chain column” can be understood from the nano-segregation among the main-chain, the rod-like mesogen and the flexible tails. Theoretical analysis indicates that the " multi-chain column” is a structure of thermodynamic equilibrium. The number of chains in the column is dependent on the volume fraction of the rigid component of the SCLCP. We propose that the chains in the column can interlock and intertwine, resulting in the intra-column entanglement. This hypothesis is supported by the study of hemiphasmid side-chain polynorbornene, which illustrates that the intra-column entanglement can endow the polymer with properties of thermoplastic elastomer. Moreover, the polymer can further exhibit excellent multi-shape memory effect at high strain. We anticipate that the further study of the " multi-chain column”, which has been overlooked for years, will deepen our understanding of some fundamental issues of the structure and dynamics of polymers, and will also help to explore the new properties and applications of SCLCPs.
  • 加载中
    1. [1]

    2. [2]

      Donald A, Windle A, Hanna S. Liquid Crystalline Polymers, Cambridge: Cambridge University Press, 2006. 1-356

    3. [3]

      Thünemann A F, Kubowicz S, Burger C, Watson M D, Tchebotareva N, Müllen K. J Am Chem Soc, 2003, 125: 352–356

    4. [4]

      Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Angew Chem Int Ed, 2007, 46: 4832–4887

    5. [5]

      Mu B, Wu B, Pan S, Fang J, Chen D. Macromolecules, 2015, 48: 2388–2398

    6. [6]

    7. [7]

      Finkelmann H, Ringsdorf H, Wendorff J H. Makromol Chem, 1978, 179: 273–276

    8. [8]

      Finkelmann H, Ringsdorf H, Siol W, Wendorff J H. Makromol Chem, 1978, 179: 829–832

    9. [9]

      Finkelmann H, Happ M, Portugal M, Ringsdorf H. Makromol Chem, 1978, 179: 2541–2544

    10. [10]

      Davidson P. Prog Polym Sci, 1996,21: 893–950

    11. [11]

      Ungar G. Polymer, 1993, 34: 2050–2059

    12. [12]

      Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20: 233–234

    13. [13]

    14. [14]

      Chen X F, Shen Z H, Wan X H, Fan X H, Chen E Q, Ma Y G, Zhou Q F. Chem Soc Rev, 2010, 39: 3072–3101

    15. [15]

    16. [16]

      Yin X Y, Ye C, Ma X, Chen E Q, Qi X Y, Duan X F, Wan X H, Cheng S Z D, Zhou Q F. J Am Chem Soc, 2003, 125: 6854–6855

    17. [17]

      Ye C, Zhang H, Huang Y, Chen E Q, Lu Y, Shen D, Wan X H, Shen Z H, Cheng S Z D, Zhou Q F. Macromolecules, 2004, 37: 7188–7196

    18. [18]

      Tu H L, Wan X H, Liu Y X, Chen X F, Zhang D, Zhou Q F, Shen Z H, Ge J J, Jin S, Cheng S Z D. Macromolecules, 2000, 33: 6315–6320

    19. [19]

    20. [20]

      Rudick J G, Percec V. Acc Chem Res, 2008, 41: 1641–1652

    21. [21]

      Percec V, Ahn C H, Cho W D, Jamieson A M, Kim J, Leman T, Schmidt M, Gerle M, Möller M, Prokhorova S A, Sheiko S S, Cheng S Z D, Zhang A, Ungar G, Yeardley D J P. J Am Chem Soc, 1998, 120: 8619–8631

    22. [22]

      Percec V, Imam M R, Peterca M, Leowanawat P. J Am Chem Soc, 2012, 134: 4408–4420

    23. [23]

      Rosen B M, Wilson D A, Wilson C J, Peterca M, Won B C, Huang C, Lipski L R, Zeng X, Ungar G, Heiney P A, Percec V. J Am Chem Soc, 2009, 131: 17500–17521

    24. [24]

      Zheng J F, Liu X, Chen X F, Ren X K, Yang S, Chen E Q. ACS Macro Lett, 2012, 1: 641–645

    25. [25]

      Liu X Q, Wang J, Yang S, Chen E Q. ACS Macro Lett, 2014, 3: 834–838

    26. [26]

      Xu Y S, Shi D, Gu J, Lei Z, Xie H L, Zhao T P, Yang S, Chen E Q. Polym Chem, 2016, 7: 462–473

    27. [27]

      Zhao R Y, Zhao T P, Jiang X Q, Liu X, Shi D, Liu C Y, Yang S, Chen E Q. Adv Mater, 2017, 29: 1605908

    28. [28]

      Nguyen H T, Destrade C, Malthécte J. Adv Mater, 1997, 9: 375–388

    29. [29]

      Levelut A M, Malthěte J, Destrade C, Tinh N H. Liq Cryst, 1987, 2: 877–888

    30. [30]

      Gharbia M, Gharbi A, Nguyen H T, Malthête J. Curr Opin Colloid Interface Sci, 2002, 7: 312–325

    31. [31]

      Hoag B P, Gin D L. Adv Mater, 1998, 10: 1546–1551

    32. [32]

      Rosen B M, Wilson C J, Wilson D A, Peterca M, Imam M R, Percec V. Chem Rev, 2009, 109: 6275–6540

    33. [33]

      Lin C, Ringsdorf H, Ebert M, Kleppinger R, Wendorff J H. Liq Cryst, 1989, 5: 1841–1847

    34. [34]

      Percec V, Heck J. Polym Bull, 1990, 24: 255–262

    35. [35]

      Percec V, Heck J. Polym Bull, 1991, 25: 55–62

    36. [36]

      Percec V, Heck J. J Polym Sci, Part A: Polym Chem, 1991, 29: 591–597

    37. [37]

      Percec V, Heck J. Polym Bull, 1991, 25: 431–438

    38. [38]

      Percec V, Heck J, Ungar G. Macromolecules, 1991, 24: 4957–4962

    39. [39]

      Percec V, Ahn C H, Ungar G, Yeardley D J P, Moller M, Sheiko S S. Nature, 1998, 391:161–164

    40. [40]

      Wunderlich B. Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects. Academic Press, 1973. 62–85

    41. [41]

      Watanabe J, Ono H, Uematsu I, Abe A. Macromolecules, 1985, 18: 2141–2148

    42. [42]

      Yamagishi T, Fukuda T, Miyamoto T, Takashina Y, Yakoh Y, Watanabe J. Liq Cryst, 1991, 10: 467–473

    43. [43]

      Stepanyan R, Subbotin A, Knaapila M, Ikkala O, Ten Brinke G. Macromolecules, 2003, 36: 3758–3763

    44. [44]

      Fredrickson G H. Macromolecules, 1993, 26: 4351–4355

    45. [45]

      Semenov A N, Sov Phys JETP, 1985, 61: 733–742

    46. [46]

      Percec V, Aqad E, Peterca M, Rudick J G, Lemon L, Ronda J C, de B B, Heiney P A, Meijer E W. J Am Chem Soc, 2006, 128: 16365–16372

    47. [47]

      Wang Y R, Li X J, Pan Y, Zheng Z H, Ding X B, Peng Y X. RSC Adv, 2014, 4: 17156–17160

    48. [48]

      Zhang Y M, Wang Q H, Wang C, Wang T M. J Mater Chem, 2011, 21: 9073–9078

    49. [49]

      Zheng N, Fang G Q, Cao Z L, Zhao Q, Xie T. Polym Chem, 2015, 6: 3046–3053

    50. [50]

      Voit W, Ware T, Dasari R R, Smith P, Danz L, Simon D, Barlow S, Marder S R, Gall K. Adv Funct Mater, 2010, 20: 162–171

    51. [51]

      Xie T, Xiao X C, Cheng Y T. Macromol Rapid Commun, 2009, 30: 1823–1827

    52. [52]

      Barkley D A, Rokhlenko Y, Marine J E, David R, Sahoo D, Watson M D, Koga T, Osuji C O, Rudick J G. J Am Chem Soc, 2017, 139: 15977–15983

    53. [53]

      Andreopoulou K A, Peterca M, Wilson D A, Partridge B E, Heiney P A, Percec V. Macromolecules, 2017, 50: 5271–5284

  • 加载中
    1. [1]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    2. [2]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    9. [9]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    17. [17]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    18. [18]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    19. [19]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    20. [20]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

Metrics
  • PDF Downloads(0)
  • Abstract views(336)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return