Citation: Ying-ying Wang, Jia-ni Ma, Jie Cui, Yuan-yuan Han, Wei Jiang. Monte Carlo Study on Self-assembly Behavior of Asymmetric Diblock Copolymers under Spherical Shell Confinement[J]. Acta Polymerica Sinica, ;2018, 0(8): 1116-1126. doi: 10.11777/j.issn1000-3304.2018.18058 shu

Monte Carlo Study on Self-assembly Behavior of Asymmetric Diblock Copolymers under Spherical Shell Confinement

  • Corresponding author: Jie Cui, jcui@ciac.ac.cn Wei Jiang, wjiang@ciac.ac.cn
  • Received Date: 11 February 2018
    Revised Date: 14 March 2018
    Available Online: 8 June 2018

  • Monte Carlo simulation was employed to investigate the self-assembly behaviors of asymmetric diblock copolymers under spherical shell confinements with different shell thicknesses and selectivity. The asymmetric diblock copolymer that can form hexagonally packed cylinders in bulk state was selected. The simulation results show that, when the cylinder-forming diblock copolymers are confined in spherical shells, the minority blocks can also form cylinder phases. It is found that the orientation of the cylinders highly depends on the shell thickness and selectivity. The formation of the cylinders, that are perpendicular to the shell surfaces and can penetrate the shell from inner to outer surfaces, is a prerequisite to obtain mesoporous polymer capsules. The formation conditions of such cylinders were elucidated in this study. In the neutral spherical shell, the simulation results indicate that the formation of the cylinders that penetrate the shell depends on the structural frustration parameter (i.e., the ratio of the shell thickness D to the equilibrium spacing between the cylinders in bulk, L0). When D is incomparable to L0, the cylinders that penetrate the shell are oberved, otherwise, the cylinders that penetrate the shell disappear. It is interesting to find that the weak repulsions between the shell boundaries and the minority blocks are favorable for the minority blocks to form branched cylinders. The branched cylinders penetrate the shell from inner to outer surfaces and form multiple channels in the shell, which benefits to fabricate polymer capsules with multiple release channels. And the formation of such branched cylinders does not depend on the structural frustration parameter D/L0. On the other hand, in the case of spherical shell with a thin thickness, the minority blocks always form well-defined cylinders that penetrate the shell, no matter whether the repulsions between the shell boundaries and the minority blocks exist. Via investigating the orientation of the polymer chains in each shell, the influence of the shell thicknesses and the repulsions between the shell boundaries and the minority blocks on the orientation of cylinders formed by the minority blocks is further elucidated.
  • 加载中
    1. [1]

    2. [2]

      Shi A C, Li B H. Soft Matter, 2013, 9(5): 1398-1413  doi: 10.1039/C2SM27031E

    3. [3]

      Wang Q, Nealey P F, de Pablo J J. Macromolecules, 2001, 34(10): 3458-3470  doi: 10.1021/ma0018751

    4. [4]

      Wang Q, Yan Q L, Nealey P F, de Pablo J J. J Chem Phys, 2000, 112(1): 450-464  doi: 10.1063/1.480639

    5. [5]

      Chen P, Liang H J. J Phys Chem B, 2006, 110(37): 18212-18224  doi: 10.1021/jp061957c

    6. [6]

    7. [7]

      Yin Y H, Sun P C, Chen T H, Li B H, Jin Q H, Ding D T, Shi A C. ChemPhysChem, 2004, 5(4): 540-548  doi: 10.1002/(ISSN)1439-7641

    8. [8]

      Huinink H P, van Dijk M A, Brokken-Zijp J C M, Sevink G J A. Macromolecules, 2001, 34(15): 5325-5330  doi: 10.1021/ma000015h

    9. [9]

      Huinink H P, Brokken-Zijp J C M, van Dijk M A, Sevink G J A. J Chem Phys, 2000, 112(5): 2452-2462  doi: 10.1063/1.480811

    10. [10]

      Yin Y H, Sun P C, Jiang R, Li B H, Chen T H, Jin Q H, Ding D T, Shi A C. J Chem Phys, 2006, 124(18): 184708  doi: 10.1063/1.2194537

    11. [11]

      Sevink G J A, Zvelindovsky A V. Macromolecules, 2009, 42(21): 8500-8512  doi: 10.1021/ma9014438

    12. [12]

      Tan H G, Song Q G, Niu X H, Wang Z Y, Gao W F, Yan D D. J Chem Phys, 2009, 130(21): 214901  doi: 10.1063/1.3141985

    13. [13]

      Tsarkova L, Knoll A, Krausch G, Magerle R. Macromolecules, 2006, 39(10): 3608-3615  doi: 10.1021/ma060224n

    14. [14]

      Xu T, Hawker C J, Russell T P. Macromolecules, 2005, 38(7): 2802-2805  doi: 10.1021/ma048005u

    15. [15]

      Yang Y Z, Qiu F, Zhang H D, Yang Y L. Polymer, 2006, 47(6): 2205-2216  doi: 10.1016/j.polymer.2006.01.047

    16. [16]

    17. [17]

      Matsen M W. J Chem Phys, 1997, 106(18): 7781-7791  doi: 10.1063/1.473778

    18. [18]

      Meng D, Wang Q. Soft Matter, 2010, 6(23): 5891-5906  doi: 10.1039/c0sm00506a

    19. [19]

      Li WH, Liu M J, Qiu F, Shi A C. J Phys Chem B, 2013, 117(17): 5280-5288  doi: 10.1021/jp309546q

    20. [20]

      Han W C, Tang P, Li X, Qiu F, Zhang H D, Yang Y L. J Phys Chem B, 2008, 112(44): 13738-13748  doi: 10.1021/jp801675z

    21. [21]

      Deng H L, Li W H, Qiu F, Shi A C. J Phys Chem B, 2017, 121(17): 4642-4649  doi: 10.1021/acs.jpcb.7b01987

    22. [22]

      He X H, Song M, Liang H J, Pan C Y.J Chem Phys, 2001, 114(23): 10510-10513  doi: 10.1063/1.1372189

    23. [23]

      Chen P, He X H, Liang H J. J Chem Phys, 2006, 124(10): 104906  doi: 10.1063/1.2178802

    24. [24]

      Zhu Y T, Jiang W. Macromolecules, 2007, 40(8): 2872-2881  doi: 10.1021/ma062022x

    25. [25]

      Wu Y Y, Cheng G S, Katsov K, Sides S W, Wang J F, Tang J, Fredrickson G H, Moskovits M,Stucky G D. Nat Mater, 2004, 3(11): 816-822  doi: 10.1038/nmat1230

    26. [26]

      Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J, Russell T P. Science, 2004, 306(5693): 76-76  doi: 10.1126/science.1100090

    27. [27]

      Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H, Shi A C. Phys Rev Lett, 2006, 96(13): 138306  doi: 10.1103/PhysRevLett.96.138306

    28. [28]

      Yu B, Jin Q H, Ding D T, Li B H, Shi A C. Macromolecules, 2008, 41(11): 4042-4054  doi: 10.1021/ma702430v

    29. [29]

      Xu J, Wang K, Liang R, Yang Y, Zhou H, Xie X, Zhu J. Langmuir, 2015, 31(45): 12354-12361  doi: 10.1021/acs.langmuir.5b03146

    30. [30]

      Li W H, Wickham R A, Garbary R A. Macromolecules, 2006, 39(2): 806-811  doi: 10.1021/ma052151y

    31. [31]

      Li W H, Wickham R A. Macromolecules, 2006, 39(24): 8492-8498  doi: 10.1021/ma061630+

    32. [32]

      Xu Y C, Li W H, Qiu F, Yang Y L, Shi A C. J Phys Chem B, 2009, 113(32): 11153-11159  doi: 10.1021/jp9043896

    33. [33]

      Li W H, Wickham R A. Macromolecules, 2009, 42(19): 7530-7536  doi: 10.1021/ma900667w

    34. [34]

      Liu M J, Li W H, Wang X P. J Chem Phys, 2017, 147(11): 114903  doi: 10.1063/1.5004181

    35. [35]

      Yu B, Li B, Jin Q, Ding D, Shi A C. Macromolecules, 2007, 40(25): 9133-9142  doi: 10.1021/ma071624t

    36. [36]

      Chen P, Liang H, Shi A C. Macromolecules, 2008, 41(22): 8938-8943  doi: 10.1021/ma800443h

    37. [37]

      Chi P, Wang Z, Li B, Shi A C. Langmuir, 2011, 27(18): 11683-11689  doi: 10.1021/la202448c

    38. [38]

      Li S, Chen P, Zhang L, Liang H. Langmuir, 2011, 27(8): 5081-5089  doi: 10.1021/la200379h

    39. [39]

    40. [40]

      Deng R, Li H, Liang F, Zhu J, Li B, Xie X, Yang Z. Macromolecules, 2015, 48(16): 5855-5860  doi: 10.1021/acs.macromol.5b01261

    41. [41]

      Xu J, Wang K, Li J, Zhou H, Xie X, Zhu J. Macromolecules, 2015, 48(8): 2628-2636  doi: 10.1021/acs.macromol.5b00335

    42. [42]

      Xu J, Wu Y, Wang K, Shen L, Xie X, Zhu J. Soft Matter, 2016, 12(16): 3683-3687  doi: 10.1039/C5SM03071D

    43. [43]

      Wang Y Q, Yang G, Tang P, Qiu F, Yang Y L, Zhu L. J Chem Phys, 2011, 134(13): 134903  doi: 10.1063/1.3575180

    44. [44]

      Li S B, Qiu W J, Zhang L X, Liang H J. J Chem Phys, 2012, 136(12): 124906  doi: 10.1063/1.3697764

    45. [45]

      Han Y Y, Cui J, Jiang W. Macromolecules, 2008, 41(16): 6239-6245  doi: 10.1021/ma800702f

    46. [46]

      Xu J P, Li J, Yang Y, Wang K, Xu N, Li J Y, Liang R J, Shen L, Xie X L, Tao J, Zhu J T. Angew Chem Int Ed, 2016, 55(47): 14633-14637  doi: 10.1002/anie.201607982

    47. [47]

      Discher D E, Ortiz V, Srinivas G, Klein M L, Kim Y, Christian D, Cai S, Photos P,Ahmed F. Prog Polym Sci, 2007, 32(8-9): 838-857  doi: 10.1016/j.progpolymsci.2007.05.011

    48. [48]

      Wilson D A, Nolte R J M, van Hest J C M. Nat Chem, 2012, 4(4): 268-274  doi: 10.1038/nchem.1281

    49. [49]

      Marguet M, Bonduelle C, Lecommandoux S. Chem Soc Rev, 2013, 42(2): 512-529  doi: 10.1039/C2CS35312A

    50. [50]

    51. [51]

      Chai A H, Zhang L X. Chinese J Polym Sci, 2011, 29(6): 684-691  doi: 10.1007/s10118-011-1072-4

    52. [52]

      Larson R G. J Chem Phys, 1988, 89(3): 1642-1650  doi: 10.1063/1.455110

    53. [53]

      Larson R G. J Chem Phys, 1989, 91(4): 2479-2488  doi: 10.1063/1.457007

    54. [54]

      Ji S C, Ding J D. Langmuir, 2006, 22(2): 553-559  doi: 10.1021/la0525067

    55. [55]

      Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. J Chem Phys, 1953, 21(6): 1087-1092  doi: 10.1063/1.1699114

    56. [56]

      Chen P, Liang H J. J Phys Chem B, 2008, 112(7): 1918-1925  doi: 10.1021/jp072942x

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    10. [10]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    15. [15]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Zhiyang LiHui DengXinqi CaiZhuo Chen . Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics. Acta Physico-Chimica Sinica, 2024, 40(7): 2306051-0. doi: 10.3866/PKU.WHXB202306051

    20. [20]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

Metrics
  • PDF Downloads(0)
  • Abstract views(210)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return