Citation: Jin-feng Zeng, Wen-di Yang, Dong-jian Shi, Xiao-jie Li, Ming-qing Chen. Preparation and Photo-thermal Properties of Thermo-sensitive Injectable Hydrogels Based on Chitosan and Au Nanoparticles[J]. Acta Polymerica Sinica, ;2018, 0(10): 1297-1306. doi: 10.11777/j.issn1000-3304.2018.18048 shu

Preparation and Photo-thermal Properties of Thermo-sensitive Injectable Hydrogels Based on Chitosan and Au Nanoparticles

  • Corresponding author: Dong-jian Shi, djshi@jiangnan.edu.cn
  • Received Date: 5 February 2018
    Revised Date: 28 March 2018
    Available Online: 24 May 2018

  • Multiple injections of drugs are generally needed to continuously and effectively kill pathological cells during tumor therapeutic. However, this strategy might induce some side effects. Gold nanoparticles are one kind of photothermal agents that can convert the absorbed light energy into heat energy. This conversion could be used to photo-thermal therapy (PTT), which has property of multiple treatment for killing the tumor cells effectively and completely without other effects. Herein, this study aims to prepare injectable hydrogels with PTT property based on chitosan (CS), β-glycerophosphate (β-GP) and gold nanoparticles (Au NPs) for improving efficiency of anti-tumour. Firstly, CS bio-polymer stabilized Au NPs (CS-Au NPs) were directly reduced in situ by CS. Size of the CS-Au NPs could be controlled at 15 nm. Then, β-glycerophosphate (β-GP) was added into the CS-Au NPs. The mixture of CS-Au NPs and β-GP was sol state at room temperature, which could be injected into the tumor site. And then, at physiological temprature (37 °C), this sol could convert to gel (CGP/Au NPs) via the interactions between CS and β-GP, indicating that the (CGP/Au NPs) gel had the temperature sensitivity. Due to the surface plasmon resonance effect (SPR) of Au NPs, the (CGP/Au NPs) hydrogels showed an excellent photo-thermal property. The temperature of the (CGP/Au NPs) gel rised to above 45 °C and further to approximately 55 °C under Laser irradiation, with increasing amout of Au NPs. Moreover, the photo-thermal ability could be kept for several cycles with repeated laser irradiation. Because of easily fixing CGP hydrogels into biological tissue, Au NPs could be immobilized on the tumor site for a long time for multiple PTT. Thus, the strategies of muiliple drug-injection and blood circulation could be changed with the help of CGP hydrogels. Additionally, Au NPs were distributed evenly in the CGP hydrogels and the (CGP/Au NPs) hydrogels had good stability. Cell viability showed that the gels had excellent biocompatibility to the normal cells, and could kill remarkably the cancer cells with laser irradiation. Meanwhile, the prepared thermo-sensitive hydrogels had good biodegradability. Due to these characteristics, this (CGP/Au NPs) hydrogel might have the potential application to achieve " one time injection, multiple treatments” for tumor therapy.
  • 加载中
    1. [1]

      Huang X, Jain P K, El-Sayed I H, El-Sayed M A. Lasers Med Sci, 2008, 23: 217 − 228

    2. [2]

      Koo Y E, Reddy G R, Bhojani M, Schneider R, Philbert M A, Rehemtulla A, Ross B D, Kopelman R. Adv Drug Delivery Rev, 2006, 58: 1556 − 1577

    3. [3]

      Abadeer N S, Murphy C J. J Phys Chem C, 2016, 120: 1171 − 1176

    4. [4]

      Yan Gang

    5. [5]

      Li S, Chen Y, Liu H, Wang Y, Liu L, Lv F, Li Y, Wang S. Chem Mater, 2017, 29: 6087 − 6094

    6. [6]

      Li Y, Liu Z, Hou Y, Yang G, Fei X, Zhao H, Guo Y, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z. ACS Appl Mater Interfaces, 2017, 9: 25098 − 25106

    7. [7]

      Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. Adv Mater, 2016, 28: 3669 − 3676

    8. [8]

      Han H S, Choi K Y, Lee H, Lee M, An J Y, Shin S, Kwon S, Lee D S, Park J H. ACS Nano, 2016, 10: 10858 − 10868

    9. [9]

      Yuan Haijian

    10. [10]

      Yang J, Yao M H, Jin R M, Zhao D H, Zhao Y D, Liu B. ACS Biomater Sci Eng, 2017, 3: 2391 − 2398

    11. [11]

      Almada M, Leal-Martinez B H, Hassan N, Kogan M J, Burboa M G, Topete A, Valdez M A, Juarez J. Mat. Ssi. Eng C-Mater, 2017, 77: 583 − 593

    12. [12]

      Wang C, Zhang H, Zeng D, San L, Mi X. Chin J Chem, 2016, 34: 299 − 307

    13. [13]

      Jin Xintian

    14. [14]

      Wang C, Wang X, Dong K, Luo J, Zhang Q, Cheng Y. Biomaterials, 2016, 104: 129 − 137

    15. [15]

      Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C. ACS Appl Mater Interfaces, 2017, 9: 20361 − 20375

    16. [16]

      Han L, Zhao J, Zhang X, Cao W, Hu X, Zou G, Duan X, Liang X J. ACS Nano, 2012, 6: 7340 − 7351

    17. [17]

      Dang Q F, Zou S H, Chen X G, Liu C S, Li J J, Zhou X, Liu Y, Cheng X J. J Appl Polym Sci, 2012, 125: E88 − E98

    18. [18]

      Dang Q F, Yan J Q, Li J J, Cheng X J, Liu C S, Chen X G. Carbohydr Polym, 2011, 83: 171 − 178

    19. [19]

      Cao C, Yan C, Hu Z, Zhou S. Mol Med Rep, 2015, 12: 6688 − 6694

    20. [20]

      Zeng Rong

    21. [21]

      Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F. Adv Mater, 2012, 24: 755 − 761

    22. [22]

      Khlebtsov N, Dykman L. Chem Soc Rev, 2011, 40: 1647 − 1671

    23. [23]

      Jaque D, Martinez M L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martin Rodriguez E, Garcia Sole J. Nanoscale, 2014, 6: 9494 − 9530

    24. [24]

      Zeng J F, Yang W D, Shi D J, Li X J, Zhang H J, and Chen M Q. ACS Biomater Sci Eng, 2018, 4: 963 − 972

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    7. [7]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    8. [8]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    12. [12]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    13. [13]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    14. [14]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    15. [15]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    18. [18]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    20. [20]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

Metrics
  • PDF Downloads(0)
  • Abstract views(288)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return