Citation: Yan-An Wang, Xiao-Tao Zhang, Yan Shi, Zhi-Feng Fu, Wan-tai Yang. Reversible-deactivation Radical Polymerization of Methyl Methacrylate Mediated by Carbodiimide Catalysts[J]. Acta Polymerica Sinica, ;2018, 0(10): 1287-1296. doi: 10.11777/j.issn1000-3304.2018.18046 shu

Reversible-deactivation Radical Polymerization of Methyl Methacrylate Mediated by Carbodiimide Catalysts

  • Corresponding author: Yan Shi, shiyan@mail.buct.edu.cn
  • Received Date: 5 February 2018
    Revised Date: 9 March 2018
    Available Online: 24 May 2018

  • The reversible-deactivation radical polymerization (RDRP) of methyl methacrylate (MMA) was carried out utilizing an alkyl iodide in situ formed as initiator and dicyclohexylcarbodiimide (DCC) or N,N′-diisopropylcarbodiimide (DIC) as highly efficient organic catalysts for the first time. Firstly, the catalytic activity of the two catalysts was demonstrated and compared. The control of the polymerization by DCC was better than that by DIC under the same experimental conditions. Then the influence of the amount of catalyst DCC, the amount of traditional initiators and the type of solvents on the polymerization was investigated in detail. The results show that the addition of DCC or DIC catalyst can effectively reduce the polydispersity index (PDI = Mw/Mn), as compared with the reverse iodine chain transfer polymerization (RITP). The catalytic performance is excellent with the ratio of [MMA]0:[I2]0:[ABVN]0:[DCC]0 = 200:1:1.7:4. The measured molecular weight by GPC is consistent with the theoretical molecular weight, and the molecular weight increases linearly with the increase in conversion rate. The molecular weight polydispersity index is small (PDI < 1.26). The polymerizations of MMA in different solvents were carried out. The induction period is shortened and the polymerization rate is increased with the increase of catalyst or initiator amount. The polymerizations have good control effect in toluene, benzene, tetrahydrofuran (THF), anisole. The structure and the iodine-end-capped structure of the obtained PMMA was demonstrated by 1H-NMR spectrum. The calculated Mn,NMR was in good agreement with Mn,GPC, and the fraction of iodine chain end of the PMMA chains was up to 97.5%, and the iodine terminus could be efficiently reactivated for chain extension. Last, the mechanism of the polymerization mediated by carbodiimide is discussed based on free radical trapping experiments and ultraviolet absorption. The high conversion of CP-I to CPo radical catalyzed by DIC and the complexation peak of I2/carbodiimide detected by ultraviolet absorption spectroscopy demonstrate that the polymerization catalyzed by carbodiimide proceeds according to the reversible complexation mediated polymerization mechanism.
  • 加载中
    1. [1]

      Jenkins D, Jones R G, Moad G. Pure Appl Chem, 2010, 82(5): 483 − 491

    2. [2]

      Otsu T, Matyjaszewski K. Macromol Rapid Commun, 1982, 26(3): 127 − 132

    3. [3]

      Hawker C J, Bosman A W, Harth E. Chem Rev, 2001, 101(12): 3661 − 3688

    4. [4]

      Xia J H, Matyjaszewski K. Macromolecules, 1997, 30(26): 8161 − 8164

    5. [5]

      Moad G, Rizzardo E, hang S H. Aust J Chem, 2006, 59(6): 669 − 692

    6. [6]

      Wolpers A, Vana P. Macromolecules, 2014, 47(3): 954 − 963

    7. [7]

      Goto A, Ohno K, Fukuda T. Macromolecules, 1998, 31(9): 2809 − 2814

    8. [8]

      Matyjaszewski K, Gaynor S, Wang J. Macromolecules, 1995, 28(6): 2093 − 2095

    9. [9]

      Ohtsuki A, Lei L, Tanishima M, Goto A, Kaji H. J Am Chem Soc, 2015, 137(16): 5610 − 5617

    10. [10]

      Goto A, Zushi H, Hirai N, Wakada T, Kwak Y, Fukuda T. Macromol Symp, 2007, 248(1): 126 − 131

    11. [11]

      Tanishima M, Goto A, Lei L, Ohtsuki A, Kaji A, Nomura A, Tsujii Y, Yamaguchi Y, Komatsu H, Miyamoto M. Polymers, 2014, 6(2): 311 − 326

    12. [12]

      Lei L, Tanishima M, Goto A, Kaji H. Polymers, 2014, 6(3): 860 − 872

    13. [13]

      David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Chem Rev, 2006, 37(51): 3936 − 3962

    14. [14]

      Tonnar J, Lacroix-Desmazes P. Polymer, 2016, 106(2): 267 − 274

    15. [15]

      Boyer C, Lacroix-Desmazes P, Robin J J, Boutevin B. Macromolecules, 2006, 39(12): 4044 − 4053

    16. [16]

      Enriquez-Medrano F J, Maldonado-Textle H, Hernandez-Valdez M, Lacroix-Desmazes P, Guerrero-Santos R. Polym Chem, 2013, 4(4): 978 − 985

    17. [17]

      Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T. J Am Chem Soc, 2007, 129(43): 13347 − 13354

    18. [18]

      Goto A, Zushi H, Hirai N, Wakada T, Kwak Y, Fukuda T. Macromol Symp, 2007, 248(1): 126 − 131

    19. [19]

      Bai L J, Zhang L F, Liu Y, Pan X Q, Cheng Z P, Zhu X L. Polym Chem, 2013, 4(10): 3069 − 3076

    20. [20]

      Goto A, Tsujii Y, Kaji H. ACS Symp Ser, 2012, 1100: 305 − 315

    21. [21]

      Goto A, Ohtsuki A, Ohfuji H, Tanishima M, Kaji H. J Am Chem Soc, 2013, 135(30): 11131 − 11139

    22. [22]

      Sarkar J, Xiao L, Goto A. Macromolecules, 2016, 49(14): 5033 − 5042

    23. [23]

      Xiao L Q, Sakakibara K, Tsujii Y, Goto A. Macromolecules, 2017, 50(5): 1882 − 1891

    24. [24]

      Goto A, Suzuki T, Ohfuji H, Tanishima M, Fukuda T, Tsujii Y, Kaji H. Macromolecules, 2011, 44(44): 8709 − 8715

    25. [25]

      Wang W X, Bai L J, Chen H, Xu H, Niu Y Z, Tao Q, Cheng Z P. RSC Adv, 2016, 6(99): 97455 − 97462

    26. [26]

      Wang Y A, Shi Y, Fu X F, Yang W T. Polym Chem, 2017, 8: 6073 − 6085

    27. [27]

      Lei L, Tanishima M, Goto A, Kaji H, Yamaguchi Y, Komatsu H, JitsukawaT, Miyamoto M. Macromolecules, 2014, 47(9): 6610 − 6618

    28. [28]

      Chen Kelong

    29. [29]

      Lei L, Tanishima M, Goto A, Kaji H. Polymers, 2014, 6(3): 860 − 872

    30. [30]

      Bai L J, Wang W X, Chen H, Wang M H, Cheng Z P. RSC Adv, 2015, 5(44): 34769 − 34776

    31. [31]

      Iwasaki N. J Chem Soc Jpn Chem Ind, 1998, (4): 231 − 239

    32. [32]

      Wright T, Chirowodza H, Pasch H. Macromolecules, 2012, 45(7): 2995 − 3003

    33. [33]

      Lacroix-Desmazes P, Severac B, Boutevin B. Macromolecules, 2005, 38(38): 6299 − 3609

    34. [34]

      Pascual S, Coutin B, Tardi M, Polton A, Vairon J P. Macromolecules, 1999, 32(5): 1432 − 1437

    35. [35]

      Robinson K L, Khan M A, M. de Paz Báñez M V, Wang X S, Armes S P. Macromolecules, 2001, 34(10): 3155 − 3158

    36. [36]

      Braunecker W A, Itami Y, Matyjaszewski K. Macromolecules, 2005, 38(23): 9402 − 9404

    37. [37]

      Ando T, Kamigaito M, Sawamoto M. Macromolecules, 1997, 30(16): 4507 − 4510

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    3. [3]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    4. [4]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    5. [5]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    6. [6]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    11. [11]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    12. [12]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    20. [20]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

Metrics
  • PDF Downloads(0)
  • Abstract views(194)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return