Citation: Yin Wang, Hai-bo Wang, Hai-jie Han, Fan Jia, Qiao Jin, Jian Ji. Construction of Multifunctional Drug Nanocarriers by Modularized Host-Guest Self-assembly[J]. Acta Polymerica Sinica, ;2018, 0(8): 1089-1096. doi: 10.11777/j.issn1000-3304.2018.18035 shu

Construction of Multifunctional Drug Nanocarriers by Modularized Host-Guest Self-assembly

  • Corresponding author: Jian Ji, jijian@zju.edu.cn
  • Received Date: 1 February 2018
    Revised Date: 12 February 2018
    Available Online: 13 April 2018

  • Unlike the crude study conducted at the beginning of nanomedicine, researchers have devoted more efforts to developing nanosystems with elaborated structures and multifunctions owing to the fact that the tumor microenvironment is complicated. However, it is still a great challenge to prepare these nanoplatforms for drug delivery. In this study, multifunctional prodrug nanocarriers were fabricated by the modularized host-guest self-assembly between cholesterol and β-cyclodextrin. The targeted ligand lactobionic acid (LBA), fluorescent probe fluoresceine isothiocyanate (FITC), and chemtherapeutic drug doxorubicin (DOX) were integrated into the multifunctional supramolecualr drug nanocarriers. The host-guest interaction between Chol-PEG and β-CD-hydrazone-DOX was confirmed by 2D 1H NOESY spectrum. The modularized functional building blocks could self-assemble into micelles with a diameter of 20 nm. The supramolecular nanocarriers showed pH-sensitive drug release behavior. The release of DOX can be greatly accelerated in acidic endo/lysosomal pH. The internalization of the supramolecular drug nanocarriers by HepG2 cells was studied by fluorescence microscopy and flow cytometry. The nanocarriers can be well taken up by cancer cells. Due to the targeting ability of LBA, the internalization of the nanocarriers can be greatly inhibited if the cells are pre-treated by free LBA. At the same time, the fluorescence of FITC can be clearly observed intracellularly, which can be used to track the sub-cellular location of the drug nanocarriers. Finally, the cytotoxicity of the drug nanocarriers was investigaed by MTT assay. With the HepG2 cells pre-treated with free LBA, the cytotoxicity of the drug nanocarriers was significantly reduced, most probably owing to the unsatisfactory cell uptake. The concentration-dependent cytotoxicity toward HepG2 cells was also observed. Therefore, the integration of target ligand and imaging ligand have endowed the nanocarriers with targeted theranostic property. More importantly, since the modularized host-guest self-assembly is dynamically tunable, the percentage of functional ligands could be easily optimized to achieve a better outcome. Such multifunctional prodrug nanocarriers fabricated by modularized host-guest self-assembly may have great potential in drug delivery.
  • 加载中
    1. [1]

      Hare J I, Lammers T, Ashford M B, Puri S, Storm G, Barry S T. Adv Drug Deliv Rev, 2017, 108(25-38  doi: 10.1016/j.addr.2016.04.025

    2. [2]

      Allen T M, Cullis P R. Adv Drug Deliv Rev, 2013, 65(1): 36-48  doi: 10.1016/j.addr.2012.09.037

    3. [3]

      Peer D, Karp J M, Hong S, FaroKHzad O C, Margalit R, Langer R. Nat Nanotechnol, 2007, 2(12): 751-760  doi: 10.1038/nnano.2007.387

    4. [4]

      Duncan R. Nat Rev Cancer, 2006, 6(9): 688-701  doi: 10.1038/nrc1958

    5. [5]

      Xie L S, Wang G H, Zhou H, Zhang F, Guo Z D, Liu C, Zhang X Z, Zhu L. Biomaterials, 2016, 103(219-228  doi: 10.1016/j.biomaterials.2016.06.058

    6. [6]

      Han H J, Valdeperez D, Jin Q, Yang B, Li Z H, Wu Y L, Pelaz B, Parak W J, Ji J. ACS Nano, 2017, 11(2): 1281-1291  doi: 10.1021/acsnano.6b05541

    7. [7]

      Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. ACS Nano, 2008, 2(5): 889-896  doi: 10.1021/nn800072t

    8. [8]

      Zhou Z J, Wang Y T, Yan Y, Zhang Q, Cheng Y Y. ACS Nano, 2016, 10(4): 4863-4872  doi: 10.1021/acsnano.6b02058

    9. [9]

      Chen W H, Lei Q, Luo G F, Jia H Z, Hong S, Liu Y X, Cheng Y J, Zhang X Z. ACS Appl Mater Interfaces, 2015, 7(31): 17171-17180  doi: 10.1021/acsami.5b04031

    10. [10]

      Fu P P, Xia Q S, Hwang H M, Ray P C, Yu H T. J Food Drug Anal, 2014, 22(1): 64-75  doi: 10.1016/j.jfda.2014.01.005

    11. [11]

      Wang S Y, Kim G, Lee Y E K, Hah H J, Ethirajan M, Pandey R K, Kopelman R. ACS Nano, 2012, 6(8): 6843-6851  doi: 10.1021/nn301633m

    12. [12]

      Chen Y J, Li Z H, Wang H B, Wang Y, Han H J, Jin Q, Ji J. ACS Appl Mater Interfaces, 2016, 8(11): 6852-6858  doi: 10.1021/acsami.6b00251

    13. [13]

      Han H J, Wang H B, Chen Y J, Li Z H, Wang Y, Jin Q, Ji J. Nanoscale, 2016, 8(1): 283-291  doi: 10.1039/C5NR06734K

    14. [14]

      Yang B, Dong X, Lei Q, Zhuo R X, Feng J, Zhang X Z. ACS Appl Mater Interfaces, 2015, 7(39): 22084-22094  doi: 10.1021/acsami.5b07549

    15. [15]

      Liu J, Tan C S Y, Yu Z Y, Lan Y, Abell C, Scherman O A. Adv Mater, 2017, 29(10): 1604951 DOI: 10.1002/adma.201604951  doi: 10.1002/adma.201604951

    16. [16]

      Liu J, Lan Y, Yu Z Y, Tan C S Y, Parker R M, Abell C, Scherman O A. Acc Chem Res, 2017, 50(2): 208-217  doi: 10.1021/acs.accounts.6b00429

    17. [17]

      Zhou J, Yu G C, Huang F H. Chem Soc Rev, 2017, 46(22): 7021-7053  doi: 10.1039/C6CS00898D

    18. [18]

      Yu G C, Jie K C, Huang F H. Chem Rev, 2015, 115(15): 7240-7303  doi: 10.1021/cr5005315

    19. [19]

      Liu G Y, Jin Q A, Liu X S, Lv L P, Chen C J, Ji J A. Soft Matter, 2011, 7(2): 662-669  doi: 10.1039/C0SM00708K

    20. [20]

      Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J. Chem Commun, 2013, 49(64): 7123-7125  doi: 10.1039/c3cc43687j

    21. [21]

      Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J. Colloid Surf B-Biointerfaces, 2014, 121: 189-195  doi: 10.1016/j.colsurfb.2014.06.024

    22. [22]

      Wang Y, Wang H B, Liu G Y, Liu X S, Jin Q, Ji J. Macromol Biosci, 2013, 13(8): 1084-1091  doi: 10.1002/mabi.201300052

    23. [23]

      van de Manakker F, van der Pot M, Vermonden T, van Nostrum C F, Hennink W E. Macromolecules, 2008, 41(5): 1766-1773  doi: 10.1021/ma702607r

    24. [24]

      Jiang H M, Zhang S F, Sui Q. Asian J Chem, 2011, 23(9): 3783-3786

    25. [25]

      Ringsdorf H. J Polym Sci Polym Symp, 1975, 51: 135-153

    26. [26]

  • 加载中
    1. [1]

      Rui WUYankun ZHANGJiufu LUPengfei ZHANGYang WANG . Research process on radioactive 18F-labelled chemical agents as positron emission tomography imaging probes for tumour detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1702-1718. doi: 10.11862/CJIC.20240387

    2. [2]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    8. [8]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    9. [9]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    10. [10]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    17. [17]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    20. [20]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

Metrics
  • PDF Downloads(0)
  • Abstract views(207)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return