Citation: Qi Zhang, Meng-juan Wei, Jin-rui Deng, Yi-xian Wu. Synthesis and Properties of Polytetrahydrofuran-b-Polydimethylsilane-b-Polytetrahydrofuran Triblock Copolymer[J]. Acta Polymerica Sinica, ;2018, 0(9): 1202-1211. doi: 10.11777/j.issn1000-3304.2018.18032 shu

Synthesis and Properties of Polytetrahydrofuran-b-Polydimethylsilane-b-Polytetrahydrofuran Triblock Copolymer

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 29 January 2018
    Revised Date: 21 February 2018
    Available Online: 3 May 2018

  • A series of polytetrahydrofuran (PTHF) and polydimethylsilane (PDMS) triblock copolymers (PTHF-b-PDMS-b-PTHF) have been synthesized via the combination of controlled termination of living PTHF chains (PTHF+) and ― NH2 functional groups along PDMS macromolecular backbone with the copolymerization efficiency of near 100%. PTHF living chains and PTHF+ were in situ prepared through living cationic opening polymerization of tetrahydrofuran (THF) with AllylBr/AgClO4 initiating system at 0 °C. The molecular weights of the PTHF chains were adjusted by mediating the molar ratio of the monomer to initiator. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR) were used to characterize the microstructure of as-prepared triblock copolymers. Thermal properties of the triblock copolymers PTHF-b-PDMS-b-PTHF were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally, polarization microscopy (POM) was employed to investigate the effect of number-average molecular weight (Mn,PTHF) of PTHF segments on the crystallization of the triblock copolymers. To have a further insight of the structures of the triblock copolymers, transmission electron microscopy (TEM) was also used to study their micromorphology. The antimicrobial activity of the material was characterized by determination of the E. coli inhibition zone. All characterization results aforementioned demonstrate that the well-defined triblock copolymers of PTHF-b-PDMS-b-PTHF with silver nanocomposites could be successfully prepared in situ with very high efficiency of ca. 95%. The crystallization of the triblock copolymers increased with increasing molecular weight of PTHF segments. Compared to the corresponding homopolymers of PTHF and PDMS, the thermal stability of the triblock copolymers was obviously improved. Moreover, the existence of amino groups (>N―H) in the macromolecular chains and a large number of ether bonds (―O―) from PTHF segments resulted in the formation of hydrogen bonds between the macro molecular chains of the triblock polymer, leading to the formation of physically cross-linked copolymer networks with more flexibility and better mechanical properties. Based on the strong hydrogen bonds, the obtained polymer networks show a pretty good self-healing performance at room temperature. The triblock copolymers were cut off at room temperature, then the cut section was self-healed for 24 h at room temperature, and the self-healed copolymers could be stretched to 1.5 times of the original length, which proved that the materials behaved good self-healing performance. Furthermore, the antimicrobial activity of the triblock copolymers was characterized by the inhibition zone method, and the diameter of inhibition zone of antibacterial was determined to be 13 mm, indicating a good antibacterial property. A novel nanocomposite, consisting of the triblock copolymer/silver, was synthesized in situ via controlled/living cationic ring-opening polymerization, and showed excellent properties resulted from PTHF, PDMS and Ag nano-particles, suggesting their potential applications in biological and medical fields.
  • 加载中
    1. [1]

      Ryu I, Kim Y, Jung Y, Lim J, Caroline A R, Son J. ACS Appl Mater Interfaces, 2017, 9: 17427 − 17434  doi: 10.1021/acsami.7b02910

    2. [2]

      David R, Michel P, Patrick N. Macromolecules, 1998, 31: 4301 − 4308  doi: 10.1021/ma971577c

    3. [3]

      Gabor E, Joseph P K. J Polym Sci, Part A: Polym Chem, 2005, 43: 4965 − 4971  doi: 10.1002/(ISSN)1099-0518

    4. [4]

      Prokopios G, Lo T, Ho R, Apostolos A. Polym Chem, 2017, 8: 843 − 850  doi: 10.1039/C6PY01768A

    5. [5]

      Jennifer M L, Leslie R B, Anthony K C C, John L B. J Biomater Sci, Polym Ed, 2014, 25: 786 − 801  doi: 10.1080/09205063.2014.907669

    6. [6]

      Zhang D D, Ruan Y B, Zhang B Q, Qiao X, Deng G H, Chen Y M, Liu C Y. Polymer, 2017, 120(30): 189 − 196

    7. [7]

      Ibarboure E, Papon E, Rodríguez H J. Polymer, 2007, 48: 3717 − 3725  doi: 10.1016/j.polymer.2007.04.046

    8. [8]

      Melissa A, Sherman, Joseph P. J Polym Sci, Part A: Polym Chem, 1998, 36: 1891 − 1899  doi: 10.1002/(ISSN)1099-0518

    9. [9]

      Chang C, Choi D, Kim W, James W Y, Lane V C, Kim Y, Kim S. J Control Release, 2007, 118: 245 − 253  doi: 10.1016/j.jconrel.2006.11.025

    10. [10]

      Juliane U, Rainer J, Robert L. Biomaterials, 2014, 35: 4848 − 4861  doi: 10.1016/j.biomaterials.2014.02.029

    11. [11]

      Zhu M, Xiang L, Yang K, Shen L, Long F, Fan J, Yi H, Xiang J, Matthew P A. J Polym Res, 2012, 19: 9808 − 9818  doi: 10.1007/s10965-011-9808-y

    12. [12]

      Bazoly R, Bruno P, Thomas H, Véronique B, Philippe G. Eur Polym J, 2017, 88: 689 − 700  doi: 10.1016/j.eurpolymj.2016.09.042

    13. [13]

      Mi H, Jing X, Brett N N, Breanna S H, Chen G, Turng L. J Mater Chem B, 2017, 5: 4137 − 4151  doi: 10.1039/C7TB00419B

    14. [14]

      Deng W, Lei Y, Zhou S, Zhang A, Lin Y. RSC Adv, 2016, 6: 51694 − 51702  doi: 10.1039/C6RA07146E

    15. [15]

      Cheradame H, Sassatelli M, Pomel C, Sanh A, Gau-Racine J, Bacri L, Auvray L, Guegan P. Macromol Symp, 2008, 261: 167 − 181  doi: 10.1002/(ISSN)1521-3900

    16. [16]

      Hourston D J, Williams G D, Santguru R, Padget J C, Pears D. J Appl Polym Sci, 1999, 74: 556 − 566  doi: 10.1002/(ISSN)1097-4628

    17. [17]

      Wei X, Ying Y, Yu X. J Appl Polym Sci, 1988, 70: 1621 − 1626

    18. [18]

      Guo A R, Yang F, Yu R, Wu Y X. Chinese J Polym Sci, 2015, 33(1): 23 − 35  doi: 10.1007/s10118-015-1571-9

    19. [19]

      Guo A R, Yang W X, Yang F, Yu R, Wu Y X. Macromolecules, 2014, 47: 5450 − 5461  doi: 10.1021/ma501060y

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      Mu C, Fan X, Tian W, Bai Y, Yang Z, Fan W, Chen H. Polym Chem, 2012, 3: 3330 − 3339  doi: 10.1039/c2py20586f

    24. [24]

      Li Y, Bai T W, Li Y F, Ling J. Macromol Chem Phys, 2017, 218(3): 1600450  doi: 10.1002/macp.v218.3

    25. [25]

      Pittsa K L, Abu-Mallouhb S, Fenecha M. J Mech Behav Biomed, 2013, 17: 333 − 336  doi: 10.1016/j.jmbbm.2012.07.007

    26. [26]

      Murielle B, Sophie C, Odile F, Françoise P, Dominique T. Langmiur, 2010, 26(22): 17427 − 17434  doi: 10.1021/la102384s

    27. [27]

      Li G F, Wu J, Wang B, Yan S F, Zhang K X, Ding J X, Yin J B. Biomacromolecules, 2015, 16: 3508 − 3518  doi: 10.1021/acs.biomac.5b01287

  • 加载中
    1. [1]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    2. [2]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    4. [4]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    5. [5]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    13. [13]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(0)
  • Abstract views(320)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return