Citation: Ruey-Chorng Lin, Shiao-Wei Kuo. Hydrogen Bonding Interactions Mediated Self-assembly Structures of Multicomponent Block Copolymer Mixtures[J]. Acta Polymerica Sinica, ;2018, 0(8): 1016-1032. doi: 10.11777/j.issn1000-3304.2018.18020 shu

Hydrogen Bonding Interactions Mediated Self-assembly Structures of Multicomponent Block Copolymer Mixtures

  • Corresponding author: Shiao-Wei Kuo, kuosw@faculty.nsysu.edu.tw
  • Received Date: 16 January 2018
    Revised Date: 23 February 2018
    Available Online: 1 March 2018

  • Self-assembly from block copolymers is a bottom-up process, a relatively inexpensive and simple approach for the preparation of large-scale nano-patterns. This self-assembly from diblock copolymers is driven by the combination of repulsive and attractive interactions due to the covalent bond linkage. The intrinsic immiscibility or incompatibility among the A or B block segments possesses the repulsive force and then confines into nanoscaled domain through the microphase separation because of the attractive force from the covalent bond linkage of A and B block segments. In general, these diblock copolymers can form different well-defined nanostructures in the bulk state including alternative lamellae, bicontinuous double gyroid, hexagonally packed cylinder, and body-centered cubic (BCC) structures, depending on the relative volume fractions of the block copolymer segments, interaction parameters (χ), and degrees of polymerization (N). However, the preparation of block copolymers with controlled volume fraction would be complicated and time-consuming; thus the diblock copolymers (A-b-B) blending with their homopolymer or low-molecular-weight compound would be an easier method for preparing different self-assembled nanostructures. Therefore, self-assembly nanostructures of block copolymer mixtures through mediated hydrogen bonding interactions have attracted much interest in polymer science because of their potential applications in photonic, electronic and biomedical fields, which could offer the unique possibility to create new functional polymeric materials with tunable and responsive behaviors. In this review article, we describe the self-assembly nanostructure of the block copolymer mixtures including block copolymer/low molecular weight compound, block copolymer/homopolymer, and block copolymer/block copolymer mixtures in bulk and solution states by mediated hydrogen bonding strength. Mediated strength of hydrogen bonding in block copolymer blending with homopolymer or block copolymer could provide order-order phase transition from typical lamellar, double gyroid, cylinder, and BCC spherical structure, even various hierarchical self-assembly structures such as three-phase lamellae, core-shell cylinder, and cylinder in lamellae structures in bulk state. Furthermore, it also possesses the different micellar structures of block copolymer mixtures such as spheres, rods, vesicles, and even large compound micelles in solution state.
  • 加载中
    1. [1]

      Kuo S W. Hydrogen Bonding in Polymeric Materials. Weinheim: Wiely-VCH, Germany, 2018

    2. [2]

      Ruokolainen J, ten-Brinke G, Ikkala O.. Macromolecules, 1996, 29: 3409-3415

    3. [3]

      Ruokolainen J, Makinen R, Torkkeli M, Makela T, Serimaa R, ten-Brinke G, Ikkala O.. Science, 1998, 280: 557-560

    4. [4]

      Ikkala O, ten-Brinke G.. Chem Commun, 2004, 2131-2137

    5. [5]

      ten-Brinke G, Ruokolaine J, Ikkala O.. Adv Polym Sci, 2007, 207: 113-178

    6. [6]

      Tanaka H, Hasegawa H, Hashimoto T.. Macromolecules, 1991, 24: 240-251

    7. [7]

      Han Y K, Pearce E M, Kwei T K.. Macromolecules, 2000, 33: 1321-1329

    8. [8]

      Jiang M, Xie H.. Prog Polym Sci, 1991, 16: 977-1026

    9. [9]

      Huang Y Y, Chen H L, Hashimoto T.. Macromolecules, 2003, 36: 764-770

    10. [10]

      Huang Y Y, Hsu J Y, Chen H L, Hashimoto T.. Macromolecules, 2007, 40: 3700-3707

    11. [11]

      Zhao J Q, Pearce E M, Kwei T K.. Macromolecules, 1997, 30: 7119-7126

    12. [12]

      Kosoneen H, Ruokolainen J, Nyholm P, Ikkala O.. Polymer, 2001, 42: 9481-9486

    13. [13]

      Dobrosielska K, Wakao S, Takano A, Matsushita Y.. Macromolecules, 2008, 41: 7695-7698

    14. [14]

      Dobrosielska K, Wakao S, Suzuki J, Noda K, Takano A, Matsushita Y.. Macromolecules, 2009, 42: 7098-7102

    15. [15]

      Chen S C, Kuo S W, Jeng U S, Su C J, Chang F C.. Macromolecules, 2010, 43: 1083-1092

    16. [16]

      Dehghan A, Shi A C.. Macromolecules, 2013, 46: 5796-5805

    17. [17]

      Coleman M M, Painter P C. Miscible Polymer Blends: Background and Guide for Calculations and Design. Lancaster: DEStech Publication Inc., PA, 2006

    18. [18]

      Tsai S C, Lin Y C, Lin E L, Chiang Y W, Kuo S W.. Polym Chem, 2016, 7: 2395-2409

    19. [19]

      Hameed N, Guo Q.. Polymer, 2008, 49: 5268-5275

    20. [20]

      Hameed N, Liu J, Guo Q.. Macromolecules, 2008, 41: 7596-7605

    21. [21]

      Hameed N, Guo Q.. Polymer, 2008, 49: 922-933

    22. [22]

      Chen W C, Kuo S W, Lu C H, Jeng U S, Chang F C.. Macromolecules, 2009, 42: 3580-3590

    23. [23]

      Salim N V, Hanley T, Guo Q.. Macromolecules, 2010, 43: 7695-7704

    24. [24]

      Li J G, Lin Y D, Kuo S W.. Macromolecules, 2011, 44: 9295-9309

    25. [25]

      Salim N V, Hameed N, Guo Q.. J Polym Sci, Part B: Polym Phys, 2009, 47: 1894-1905

    26. [26]

      Hameed N, Salim N V, Guo Q.. J Chem Phys, 2009, 131: 214905

    27. [27]

      Lee H F, Kuo S W, Huang C F, Lu J S, Chan S C, Wang C F, Chang F C.. Macromolecules, 2006, 39: 5458-5465

    28. [28]

      Chen W C, Kuo S W, Jeng U S, Chang F C.. Macromolecules, 2008, 41: 1401-1410

    29. [29]

      Zhou J, Shi A C.. J Chem Phys, 2009, 130: 234904

    30. [30]

      Lin I, Kuo S W, Chang F C.. Polymer, 2009, 50: 5276-5287

    31. [31]

      Han S H, Pryamitsyn V, Bae D, Kwak J, Ganesan V, Kim J K.. ACS Nano, 2012, 6: 7966-7972

    32. [32]

      Kwak J, Han S H, Moon H C, Kim J K.. Macromolecules, 2015, 48: 6347-6352

    33. [33]

      Kuo S W.. Polym Inter, 2009, 58: 455-464

    34. [34]

      Chen W C, Kuo S W, Chang F C.. Polymer, 2010, 51: 4176-4184

    35. [35]

      Jiang S, Gopfert A, Abetz V.. Macromolecules, 2003, 36: 6171-6177

    36. [36]

      Asari T, Matsuo S, Takano A, Matsushita Y.. Macromolecules, 2005, 38: 8811-8815

    37. [37]

      Asari T, Arai S, Takano A, Matsushita Y.. Macromolecules, 2006, 39: 2232-2237

    38. [38]

      Matsushita Y.. Macromolecules, 2007, 40: 771-776

    39. [39]

      Miyase H, Asai Y, Takano A, Matsushita Y.. Macromolecules, 2017, 50: 979-986

    40. [40]

      Tang C, Lennon E M, Fredrickson G H, Kramer E J, Hawker C J.. Science, 2008, 322: 429-432

    41. [41]

      Mai Y, Eisenberg A.. Chem Soc Rev, 2012, 41: 5969-5985

    42. [42]

      Peng H, Chen D, Jiang M.. Langmuir, 2003, 19: 10989-10992

    43. [43]

      Zhu J, Yu H, Jiang W.. Macromolecules, 2005, 38: 7492-7501

    44. [44]

      Chen S C, Kuo S W, Chang F C.. Langmuir, 2011, 27: 10197-10205

    45. [45]

      Zhang Y, Xiang M, Jiang M, Wu C.. Macromolecules, 1997, 30: 2035-2041

    46. [46]

      Gao W P, Bai Y, Chen E Q, Li Z C, Han B Y, Yang W T, Zhou Q F.. Macromolecules, 2006, 39: 4894-4898

    47. [47]

      Zhang W, Shi L, Gao L, An Y, Li G, Wu K, Liu Z.. Macromolecules, 2005, 38: 899-903

    48. [48]

      Matejicek P, Uchman M, Lokajova J, Stepanek M, Prochazka K, Spirkova M.. J Phys Chem B, 2007, 111: 8394-8401

    49. [49]

      Lee S C, Kim K J, Jeong Y K, Chang J H, Choi J.. Macromolecules, 2005, 38: 9291-9297

    50. [50]

      Lefevre N, Fustin C A, Gohy J F.. Macromol Rapid Commun, 2009, 30: 1871-1888

    51. [51]

      Talingting M R, Munk P, Webber S E, Tuzar Z.. Macromolecules, 1999, 32: 1593-1601

    52. [52]

      Xie D, Xu K, Bai R, Zhang G.. J Phys Chem B, 2007, 111: 778-781

    53. [53]

      Huang W, Luo C, Li B, Han Y.. Macromolecules, 2006, 39: 8075-8082

    54. [54]

      Kuo S W, Chung Y C, Jeong K U, Chang F C.. J Phys Chem C, 2008, 112: 16470-16477

    55. [55]

      Gao Y, Wei Y, Li B, Han Y.. Polymer, 2008, 49: 2354-2361

    56. [56]

      Li G, Shi L, Ma R, An Y, Haung N.. Angew Chem Int Ed, 2006, 118: 5081-5084

    57. [57]

      Xiong D, He Z, An Y, Li Z, Wang H, Chen X, Shi L.. Polymer, 2008, 49: 2548-2522

    58. [58]

      Xiong D, Shi L, Jiang X, An Y, Chen X, Lu J.. Macromol Rapid Commun, 2007, 28: 194-199

    59. [59]

      Kuo S W, Tung P H, Lai C L, Jeong K U, Chang F C.. Macromol Rapid Commun, 2008, 29: 229-233

    60. [60]

      Kuo S W, Tung P H, Chang F C.. Eur Polym J, 2009, 45: 1924-1935

    61. [61]

      Hsu C H, Kuo S W, Chen J K, Ko F H, Liao C S, Chang F C.. Langmuir, 2008, 24: 7727-7734

    62. [62]

      Wu Y C, Kuo S W, Polym Chem, 2012, 3: 3100-3111

    63. [63]

      Wu Y R, Wu Y C, Kuo S W, Macromol Chem Phys, 2013, 214: 1496-1503

    64. [64]

      Wu Y C, Bastakoti P P, Pramanik P, Yamauchi Y, Kuo S W, Polym Chem 2015, 6: 5110-5124

    65. [65]

      Huang C W, Ji W Y, Kuo S W, Macromolecules, 2017, 50: 7091-7101

  • 加载中
    1. [1]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    2. [2]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    3. [3]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    4. [4]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    8. [8]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    19. [19]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    20. [20]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

Metrics
  • PDF Downloads(0)
  • Abstract views(793)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return