Citation: Zhi-feng Cai, Qing-yin Wang, Shao-ying Liu, Gong-ying Wang. Study of KF/Al2O3 Catalyst in Synthesis of Poly(ethylene terephthalate) by Esterification[J]. Acta Polymerica Sinica, ;2018, 0(9): 1184-1193. doi: 10.11777/j.issn1000-3304.2018.18014 shu

Study of KF/Al2O3 Catalyst in Synthesis of Poly(ethylene terephthalate) by Esterification

  • Corresponding author: Shao-ying Liu, syliu@cioc.ac.cn Gong-ying Wang, gywang@cioc.ac.cn
  • Received Date: 15 January 2018
    Revised Date: 8 March 2018
    Available Online: 11 July 2018

  • A series of KF/Al2O3 solid base catalysts were prepared by a wet impregnation method and applied to the synthesis of poly(ethylene terephthalate) (PET) from 1,4-dicarboxybenzene and ethylene glycol. The effect of KF content and calcination temperature on the structure, active components and properties of the catalysts were investigated. The structure of KF/Al2O3 catalysts was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET. The basic strength and basicity of KF/Al2O3 catalysts were measured by Hammett indicator. The relationship between KF content, calcination temperature and the structure, basic strength and basicity of KF/Al2O3 catalyst was investigated. The relationship between the structure, basic strength and basicity of KF/Al2O3 catalysts and the catalytic activity in PET synthesis was also studied. The results showed that KF/Al2O3 catalysts could be used to synthesize high-molecular-weight PET. It was found that several types of basic centers such as K3AlF6, KAlO2, K2O and K2CO3 existed in the catalyst. The specific surface area of KF/Al2O3 was reduced with increasing KF content. The particle size of KF/Al2O3 increased with increasing KF content. The basic strength and basicity of KF/Al2O3 increased with increasing KF content and calcination temperature. The activity of KF/Al2O3 was related to the basic strength and basicity and was not really influenced by the specific surface area and particle size. Medium strength basic sites were responsible for the higher intrinsic viscosity, and strong basic sites could cause decomposition of the obtained polymer. Strong basic sites were mainly due to potassium carbonate, potassium aluminate and potassium oxide. The catalytic effect of 25-KF/Al2O3-400 was better than that of Sb2O3. It contained γ-Al2O3, K3AlF6 and a small amount of K2CO3. It had moderate basic strength, basicity and high activity. Based on the obtained results, the possible active site was K3AlF6. The intrinsic viscosity of 1.07 dL/g, with carboxyl end group content of 20.29 mol/t, DEG content of 2.85%, L value of 86.6 and b value of 4.6, was obtained with 0.1 wt% of catalyst concentration.
  • 加载中
    1. [1]

    2. [2]

      Ni L L, Xin J Y, Dong H X, Liu X M, Liu X M, Zhang S J. ChemSusChem, 2017, 10: 2394 − 2401

    3. [3]

    4. [4]

      Aharoni S M. Polym Eng Sci, 1998, (38): 1039 − 1047

    5. [5]

      He M C, Yang J R. Sci Total Environ, 1999, 234(9): 149 − 155

    6. [6]

      McClelland E, Harrogate. US patent, C08g, 3965071.1976-06-22

    7. [7]

      Ronald A. Tershansy. US patent, C08g, 3907754.1975-09-23

    8. [8]

      Neidel U, Eckert T. Chem Fibers Int, 1999, 49: 27 − 29

    9. [9]

      Yin M, Li C C, Guan G H, Zhang D, Xiao Y N. J Appl Polym Sci, 2010, 115(4): 2470 − 2478

    10. [10]

    11. [11]

      Finelli L, Lorenzetti C, Messori M, Sisti L, Vannini M. J Appl Polym Sci, 2004, 92: 1887 − 1892

    12. [12]

    13. [13]

    14. [14]

      Lin Q H, GuY Q, Chen D J. J Appl Polym Sci, 2013, 129(5): 2571 − 2579

    15. [15]

      Xiao B, Wang L P, Mei R H, Wang G Y. Chinese Chem Lett, 2011, 22(6): 741 − 744

    16. [16]

    17. [17]

      Zheng X Y, Fan W M, Kong W P, Qi C. Kinet Catal, 2014, 55(5): 592 − 598

    18. [18]

      Shahraki H, Entezari M H, Goharshadi E K. Ultrason Sonochem, 2015, 23: 266 − 274

    19. [19]

      Xu B, Xiao G M, Cui L F, Wei R P, Gao L J. Energ Fuel, 2007, 21: 3109 − 3112

    20. [20]

      Feng Y X, Yin N, Li Q F, Wang J W, Kang M Q, Wang X K. Catal Lett, 2008, 121: 97 − 102

    21. [21]

      Serio M D, Tesser R, Ferrara A, Santacesaria E. J Mol Catal A-Chem, 2004, 212: 251 − 257

    22. [22]

      Yan S L, Kim M, Salley S O, Simon S K Y. Appl Catal A-Gen, 2009, 360: 163 − 170

    23. [23]

      Xie W L, Peng H, Chen L G. Appl Catal A-Gen, 2006, 300: 67 − 74

    24. [24]

      Xu C L, Sun J, Zhao B B, Liu Q. Appl Catal B-Environ, 2010, 99: 111 − 117

    25. [25]

      Qiu P, Yang B L, Yi C H, Qi S T. Catal Lett, 2010, 137: 232 − 238

    26. [26]

      Liu Z M, Wang J W, Kang M Q, Yin N, Wang X K, Tan Y S, Zhu Y L. J Braz Chem Soc, 2014, 25: 152 − 160

    27. [27]

      Liu Z M, Wang J W, Kang M Q, Yin N, Wang X K, Tan Y S, Zhu Y L. J Ind Eng Chem, 2015, 21: 394 − 399

    28. [28]

      Wang S, Hao P F, Li S X, Zhang A L, Guan Y Y, Zhang L N. Appl Catal A-Gen, 2017, 542: 174 − 181

    29. [29]

      Holland B J, Hay J N. Polymer, 2002, 43: 1835 − 1847

    30. [30]

      Holland B J, Hay J N. Polymer, 2002, 43: 1797 − 1804

    31. [31]

      Yang J H, Xia Z X, Kong F T, Ma X S. Polym Degrad Stab, 2010, 95: 53 − 58

    32. [32]

      Hovenkamp S G, Munting J P. J Polym Sci, Part B: Polym Chem, 1970, 8: 679 − 682

    33. [33]

      Wang Z Q, Yang X G, Li J G, Liu S Y, Wang G Y. J Mol Catal A-Chem, 2016, 424: 77 − 84

    34. [34]

      Jung J H, Moonhor R, Heesoo K. Catal Today, 2006, 115: 283 − 287

    35. [35]

      Dimitris N B, George P K. Polym Degrad Stab, 1999, 63: 213 − 218

    36. [36]

      Zimmerman H, Kim N T. Polym Eng Sci, 1980, 20: 680 − 683

  • 加载中
    1. [1]

      Tinghui Hu Junwen Long Yi Long Xuanhe Liu . Plastic Disillusionment. University Chemistry, 2025, 40(7): 249-254. doi: 10.12461/PKU.DXHX202409004

    2. [2]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    3. [3]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    4. [4]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    6. [6]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    7. [7]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    8. [8]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    10. [10]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    11. [11]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    12. [12]

      Haotian ZhangShengfa FengMufan CaoXiong Xiong LiuPengcheng YuanYaping WangMin GaoLong PanZhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096

    13. [13]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    19. [19]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    20. [20]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(0)
  • Abstract views(234)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return