Citation: Mao Fan, Si-rui Fu, Shuo Guo, Feng Chen, Qiang Fu. Fabrication of High-performance PBS/PETG Blends by High-speed Extrusion[J]. Acta Polymerica Sinica, ;2018, 0(9): 1244-1252. doi: 10.11777/j.issn1000-3304.2018.18005 shu

Fabrication of High-performance PBS/PETG Blends by High-speed Extrusion

  • Corresponding author: Qiang Fu, qiangfu@scu.edu.cn
  • Received Date: 4 January 2018
    Revised Date: 26 February 2018
    Available Online: 1 March 2018

  • Blends based on poly(butylene succinate) (PBS) and poly(ethylene glycol-co-cyclohexane-1,4-dimethanolterephthalate) (PETG) were successfully fabricated by a special twin screw extruder. Effects of PETG content and rotating speed on the dispersed size and mechanical properties of the PBS/PETG blends were investigated. The average diameter of PETG phase showed a downwards trend from 2.27 μm to 0.89 μm with increasing rotating speed from 150 r/min to 900 r/min for a blend with 20 wt% of PETG. Meanwhile, the yield strength of the blend was raised from 26.2 MPa to 33.4 MPa. In addition, the elongation at break was also promoted from 13.3% to 133.3%, which indicated a transformation from brittle fracture into ductile fracture as accomplished by high speed extrusion. However, the decrease of the dispersed PETG size was very limited by increasing rotating speed for the blends containing 10 wt% or 30 wt% of PETG. As a result, the yield strength and the elongation at break showed only limited increase in the obtained blends. The relationship between the size of the dispersed phase and mechanical properties of the PBS/PETG blends prepared with different components and at different rotating speeds were analyzed comprehensively. A nearly linear relationship was found between the yield strength and the diameter of the dispersed phase, disregarding the composition and rotating speed. This demonstrated again the importance of the size of the dispersed phase in determining the property of PBS/PETG blends. GPC and DSC results indicated no obvious change in molecular weight and crystallinity of PBS by increasing rotating speed, and the observed property change of the blends was well explained by the change of dispersed phase size induced by high speed rotating. It should be noted that the high speed rotating induced change in the size of the dispersed phase was thermodynamically unstable. The stability of the blends will be investigated in our future work.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Sang L, Zhao M, Liang Q, Wei Z. Polymers, 2017, 9(8): 351 − 364

    6. [6]

      Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny J M, Torre L. Materials, 2017, 10(7): 809 − 824

    7. [7]

      Liu G C, Zhang W Q, Zhou S L, Wang X L, Wang Y Z. RSC Adv, 2016, 6(73): 68942 − 68951

    8. [8]

      Feng Y H, Li Y J, Xu BP, Zhang D W, Qu J P, He H Z. Compos Part B, 2013, 44(1): 193 − 199

    9. [9]

      Zhou W H, Ye S W, Chen Y W, Huang Y L, Yuan S S. J Macromol Sci B, 2012, 51(12): 2361 − 2376

    10. [10]

      PivsaArt W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H. J. Polym Res, 2016, 23(8): 144 − 151

    11. [11]

      Voznyak Y, Morawiec J, Galeski A. Compos Part A, 2016, 90: 218 − 224

    12. [12]

      Zhou M, Fan M, Zhao Y S, Jin T X, Fu Q. Carbohydr Polym, 2016, 140: 383 − 392

    13. [13]

      Zhou M, Xu S M, Li Y H, He C, Jin T X, Wang K, Deng H, Zhang Q, Chen F, Fu Q. Polymer, 2014, 55(13): 3045 − 3053

    14. [14]

      Lv Z Y, Zhang M C, Zhang Y, Guo B H, Xu J. Chinese J Polym Sci, 2017, 35(12): 1552 − 1560

    15. [15]

      Jiang J, Zhuravlev E, Hu W B, Schick C, Zhou D S. Chinese J Polym Sci, 2017, 35(8): 1009 − 1019

    16. [16]

    17. [17]

    18. [18]

      Shibata M, Inoue Y, Miyoshi M. Polymer, 2006, 47(10): 3557 − 3564

    19. [19]

      Wu J H, Yen M S, Kuo M C, Tsai Y H, Leu M T. J Appl Polym Sci, 2015, 132(27): 42207

    20. [20]

      Martinez A B, Leon N, Arencon D, Rodriguez J, Salazar A. Polym Test, 2013, 32(7): 1244 − 1252

    21. [21]

      Chen T T, Zhang W K, Zhang J. Polym. Degrad Stab, 2015, 120: 232 − 243

    22. [22]

      Jiang W R, Bao R Y, Yang W, Liu Z Y, Xie B H, Yang M B. Mater Design, 2014, 59: 524 − 531

    23. [23]

      Wang X D, Liu W, Zhou H F, Liu B G, Li H Q, Du Z J, Zhang C. Polymer, 2013, 54(21): 5839 − 5851

    24. [24]

      Louizi M, Massardier V, Cassagnau P. Macromol Mater Eng, 2014, 299(6): 674 − 688

    25. [25]

      Li Y J, Shimizu H. Macromol Biosci, 2007, 7(7): 921 − 928

    26. [26]

      Li Y, Shimizu H. Polym Eng Sci, 2011, 51(7): 1437 − 1445

    27. [27]

      Teyssandier F, Cassagnau P, Gérard J F, Mignard N, Mélis F. Mater Chem Phys, 2012, 133(2-3): 913 − 923

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    8. [8]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    9. [9]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    10. [10]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    11. [11]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    14. [14]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    15. [15]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    16. [16]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(0)
  • Abstract views(289)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return