Citation: Rong Hu, De-hua Xin, An-jun Qin, Ben Zhong Tang. Polymers with Aggregation-induced Emission Characteristics[J]. Acta Polymerica Sinica, ;2018, (2): 132-144. doi: 10.11777/j.issn1000-3304.2018.17280 shu

Polymers with Aggregation-induced Emission Characteristics

  • Organic luminescent materials have played important roles in optoelectronic device, chemo-/biosensing, and biomedical applications. However, traditional luminescent materials always suffer from the aggregation-caused quenching (ACQ) effect:they are highly emissive in dilute solutions but their emission becomes weaker or totally quenched in the practical application forms, i.e. the aggregate, film and solid states. The ACQ effect has greatly limited the applications of these luminescent materials in many fields. Exactly opposite to the ACQ, the aggregation-induced emission (AIE) can actively utilize the natural aggregation process of a molecule to provide intense emission in the aggregate and solid states. In the AIE area, the research is focusing on the low mass molecules, and the polymers have been paid less attention although they possess the unique properties such as good film-forming ability, amplification effect of the signals, and multiple functionalization, which facilitates their practical applications. In this review, we first accounted the used polymerizations for the construction of AIE polymers, such as polycouplings, radical polymerization, and click polymerizations. Next, we discussed the structure-property relationship of the AIE polymers based on the systematically investigation of the effect of substituent groups, the link of TPE and fluorene groups on the triazole rings, the attachment of TPE-diethynyl groups on phenyl rings with o, m, and p-positions, and the side-chains on their photo-physical properties. Moreover, the interesting non-conjugated AIE polymers without aromatic rings were also discussed and cluster oluminescence was proposed as the cause for this unique emission. Finally, the applications of the AIE polymers in chemo-and biosensors, and tracing were reviewed and the advantages of AIE polymers over AIE low-mass molecules were also emphasized. It is expected that this review could serve as a trigger for future innovation in the AIE research area.
  • 加载中
    1. [1]

      Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Angew Chem Int Ed, 2011, 50:4056-4066  doi: 10.1002/anie.v50.18

    2. [2]

      Wong K M C, Yam V W W. Acc Chem Res, 2011, 44:424-434  doi: 10.1021/ar100130j

    3. [3]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Chem Rev, 2012, 112:1126-1162  doi: 10.1021/cr200101d

    4. [4]

      Hong Y N, Lam J W Y, Tang B Z. Chem Soc Rev, 2011, 40:5361-5388  doi: 10.1039/c1cs15113d

    5. [5]

      Luo J T, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem Commun, 2001, 1740-1741
       

    6. [6]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem Rev, 2015, 115:11718-11940
       

    7. [7]

      Schaferling M. Angew Chem Int Ed, 2012, 51:3532-3554  doi: 10.1002/anie.v51.15

    8. [8]

      Feng X, Liu L, Wang S, Zhu D. Chem Soc Rev, 2010, 39:2411-2419
       

    9. [9]

      Yang Y M, Zhao Q, Feng W, Li F Y. Chem Rev, 2013, 113:192-270  doi: 10.1021/cr2004103

    10. [10]

      Mattoussi H, Palui G, Na H B. Adv Drug Delivery Rev, 2012, 64:138-166
       

    11. [11]

      Wong W Y, Ho C L. J Mater Chem, 2009, 19:4457-4482  doi: 10.1039/b819943d

    12. [12]

      Cicoira F, Santato C. Adv Funct Mater, 2007, 17:3421-3434
       

    13. [13]

      Yang J, Li L, Yu Y, Ren Z C, Peng Q, Ye S H, Li Q Q, Li Z. Mater Chem Front, 2017, 1:91-99  doi: 10.1039/C6QM00014B

    14. [14]

      Wang R, Yuan W Z, Zhu X Y. Chinese J Polym Sci, 2015, 33(5):680-687  doi: 10.1007/s10118-015-1635-x

    15. [15]

      Aifu N, dong X B, Li D Y, Sun X H, Zebibula A, Zahng D Q, Zhang G X, Qian J. Mater Chem Front, 2017, 1:1746-1753  doi: 10.1039/C7QM00092H

    16. [16]

      Wu W B, Ye S H, Huang L J, Xiao L, Fu Y J, Huang Q, Yu G, Liu Y Q, Qin J J, Li Q Q, Li Z. J Mater Chem, 2012, 22:6374-6382  doi: 10.1039/c2jm16514g

    17. [17]

      Yang Peipei, Dong Lichao, Li Yuanyuan, Zhang Longlong, Shi Jianbing, Zhi Junge, Tong Bin, Dong Yuping. Acta Polymerica Sinica, 2017, (8):1285-1293
       

    18. [18]

      Ding D, Li K, Liu B, Tang B Z. Acc Chem Res, 2013, 46:2441-2453  doi: 10.1021/ar3003464

    19. [19]

      Yuan W Z, Zhao H, Shen X Y, Mahtab F, Lam J W Y, Sun J, Tang B Z. Macromolecules, 2009, 42:9400-9411  doi: 10.1021/ma9012169

    20. [20]

      Yuan Y, Zhang C J, Liu B. Angew Chem Int Ed, 2015, 54:11419-11423  doi: 10.1002/anie.201503640

    21. [21]

      Lam J W Y, Chen J, Law C C W, Peng H, Xie Z, Cheuk K K L, Kwok H S, Tang B Z. Macromol Symp, 2003, 196:289-300  doi: 10.1002/masy.200390169

    22. [22]

      Li Y, Yu H, Qian Y, Hu J, Liu S. Adv Mater, 2014, 26:6734-6741  doi: 10.1002/adma.v26.39

    23. [23]

      Chen J W, Xie Z L, Lam J W Y, Law C C W, Tang B Z. Macromolecules, 2003, 36:1108-1117  doi: 10.1021/ma0213504

    24. [24]

      Chen J I, Wu W C. Macromol Biosci, 2013, 13:623-632  doi: 10.1002/mabi.201200396

    25. [25]

      Wang Z, Yong T Y, Wan J, Li Z H, Zhao H, Zhao Y, Gan L, Yang X L, Xu H B, Zhang C. ACS Appl Mater Interfaces, 2015, 7:3420-3425  doi: 10.1021/am509161y

    26. [26]

      Zhang X Y, Zhang X Q, Yang B, Liu M, Liu W, Chen Y, Wei Y. Polym Chem, 2014, 5:356-360
       

    27. [27]

      Wang H, Liu G, Dong S, Xiong J, Du Z, Cheng X. J Mater Chem B, 2015, 3:7401-7407
       

    28. [28]

      Wang Z, Chen S, Lam J W Y, Qin W, Kwok R T K, Xie N, Hu Q, Tang B Z. J Am Chem Soc, 2013, 135:8238-8245  doi: 10.1021/ja312581r

    29. [29]

      Yang B, Hui J, Liu M, Chi Z, Liu S, Xu J, Wei Y. Polym Chem, 2014, 5:683-688
       

    30. [30]

      Hu R R, Nelson L C, Tang B Z. Chem Soc Rev, 2014, 43:4494-4562  doi: 10.1039/C4CS00044G

    31. [31]

      Qin A J, Lam J W Y, Tang B Z. Prog Polym Sci, 2012, 37:182-209  doi: 10.1016/j.progpolymsci.2011.08.002

    32. [32]

      Hu R, Maldonado J L, Rodriguez M, Deng C, Jim C K W, Lam J W Y, Yuen M M F, Ramos Ortiz G, Tang B Z. J Mater Chem, 2012, 22:232-240  doi: 10.1039/C1JM13556B

    33. [33]

      Xu Y, Chen L, Guo Z, Nagai A, Jiang D. J Am Chem Soc, 2011, 133:17622-17625  doi: 10.1021/ja208284t

    34. [34]

      Chen C H, Lee S L, Lim T S, Chen C H, Luh T Y. Polym Chem, 2011, 2:2850-2856  doi: 10.1039/c1py00259g

    35. [35]

      Liu Y, Feng X, Shi J, Zhi J, Tong B, Dong Y. Chinese J Polym Sci, 2012, 30(3):443-450  doi: 10.1007/s10118-012-1135-1

    36. [36]

      Qin A J, Tang B Z, ed. Aggregation-Induced Emission: Fundamentals. Chichester: John-Wiley & Sons, Ltd, 2014. 1-418

    37. [37]

      Kabalka G W, Yao M L, Borella S, Wu Z, Ju Y H, Quick T. J Org Chem, 2008, 73:2668-2691  doi: 10.1021/jo702493j

    38. [38]

      Zhang X, Zhang X, Yang B, Hui J, Liu M, Chi Z, Liu S, Xu J, Wei Y. Polym Chem, 2014, 5:318-322  doi: 10.1039/C3PY01143G

    39. [39]

      Corriu R J P. Angew Chem Int Ed, 2000, 39:1376-1398  doi: 10.1002/(SICI)1521-3773(20000417)39:8<1376::AID-ANIE1376>3.0.CO;2-S

    40. [40]

      Gu P Y, Lu C J, Hu Z J, Li N J, Zhao T T, Xu Q F, Xu Q, Zhang J D, Lu J M. J Mater Chem C, 2013, 1:25-99
       

    41. [41]

      Qin A J, Jim C K W, Tang Y, Lam J W Y, Liu J, Mahtab F, Gao P, Tang B Z. J Phys Chem B, 2008, 112:9281-9288  doi: 10.1021/jp800296t

    42. [42]

      Chen J, Xie Z, Lam J W Y, Law C C W, Tang B Z. Macromolecules, 2003, 36:1108-1117  doi: 10.1021/ma0213504

    43. [43]

      Yuan W, Zhao H, Shen X, Mahtab F, Lam J W Y, Sun J, Tang B Z. Macromolecules, 2009, 42:9400-9411  doi: 10.1021/ma9012169

    44. [44]

      Hu R, Wang F, Li S, Nie C, Li M, Chen H, Liu L, Lv F, Wang S. Polym Chem, 2015, 6:8244-8247  doi: 10.1039/C5PY01403D

    45. [45]

      Lowe A B, Hoyle C E, Bowman C N. J Mater Chem, 2010, 20:4745-4750  doi: 10.1039/b917102a

    46. [46]

      Lowe A B. Polym Chem, 2010, 1:17-36  doi: 10.1039/B9PY00216B

    47. [47]

      Lowe A B. Polym Chem, 2014, 5:4820-4870
       

    48. [48]

      Tasdelen M A. Polym Chem, 2011, 2(10):2133-2145  doi: 10.1039/c1py00041a

    49. [49]

      Kempe K, Krieg A. Becer C R, Chem Soc Rev, 2012, 41:176-191  doi: 10.1039/C1CS15107J

    50. [50]

      Liu Y, Lam J W Y, Tang B Z. Natl Sci Rev, 2015, 2:493-509  doi: 10.1093/nsr/nwv047

    51. [51]

      Yao B C, Mei J, Li J, Wang J, Wu H, Sun J, Qin A J, Tang B Z. Macromolecules, 2014, 47:1325-1333  doi: 10.1021/ma402559a

    52. [52]

      Yao B C, Hu T, Zhang H, Li J, Sun J, Qin A J, Tang B Z. Macromolecules, 2015, 48:7782-7791  doi: 10.1021/acs.macromol.5b01868

    53. [53]

      He B, Su H, Bai T, Wu Y, Li S, Gao M, Hu R, Zhao Z, Qin A J, Ling J, Tang B Z. J Am Chem Soc, 2017, 139:5437-5443  doi: 10.1021/jacs.7b00929

    54. [54]

      Zhao E G, Li H, Ling J, Wu H, Wang J, Zhang S, Lam J W Y, Sun J Z, Qin A J, Tang B Z. Polym Chem, 2014, 5:2301-2308  doi: 10.1039/c3py01387a

    55. [55]

      Shi J, Wu Y, Sun S, Tong B, Zhi J, Dong Y. J Polym Sci, Part A:Polym Chem, 2013, 51:229-240  doi: 10.1002/pola.26377

    56. [56]

      Hu R R, Maldonado J L, Rodriguez M, Deng C, Jim C K W, Lam J K W Y, Yuen M M F, Ramos-Ortiz G, Tang B Z.J Mater Chem, 2012, 22:232-240
       

    57. [57]

      Liu X, He L, Wang C, Hanif I, Huang H, Bu W. J Mater Chem C, 2017, 5:3156-3166  doi: 10.1039/C7TC00273D

    58. [58]

      Ruff Y, Lehn J M. Angew Chem Int Ed, 2008, 47:3556-3559  doi: 10.1002/(ISSN)1521-3773

    59. [59]

      Sun M, Hong C Y, Pan C Y. J Am Chem Soc, 2012, 134:20581-20584
       

    60. [60]

      Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z. Macromolecules, 2015, 48:64-71  doi: 10.1021/ma502160w

    61. [61]

      Zhou X B, Luo W, Nie H, Xu L G, Hu R R, Zhao Z J, Qin A J, Tang B Z. J Mater Chem C, 2017, 5:4775-4779  doi: 10.1039/C7TC00868F

    62. [62]

      Shang C, Wei N, Zhuo H M, Shao Y M, Zhang Q, Zhang Z, Wang H L. J Mater Chem C, 2017, 5:8082-8090  doi: 10.1039/C7TC02381B

    63. [63]

      Zhan R Y, Pan Y T, Manghnani P N, Liu B. Macromol Biosci, 2017, 1600433
       

    64. [64]

      Zhu C, Liu L, Yang Q, Wang S. Chem Rev, 2012, 113:4687-4735
       

    65. [65]

      Zhou H, Wang X, Lin T, Song J, Tang B Z, Xu J W. Polym Chem, 2016, 7:6309-6317  doi: 10.1039/C6PY01358A

    66. [66]

      Li H, Wu H, Zhao E, Li J, Sun J, Qin A J, Tang B Z. Macromolecules, 2013, 46:3907-3914  doi: 10.1021/ma400609m

    67. [67]

      Dong W, Wu H, Chen M, Shi Y, Sun J, Qin A J, Tang B Z. Polym Chem, 2016, 7:5835-5839  doi: 10.1039/C6PY01202G

    68. [68]

      Li J W, Li Y, Chan C Y K, Kwork R T K, Li H K, Zrazheskiy P, Gao X H, Sun J Z, Qin A J, Tang B Z. Angew Chem Int Ed, 2014, 53:13518-13522  doi: 10.1002/anie.201408757

    69. [69]

      Feng L H, Liu L B, Lv F T, Bazan G C, Wang S. Adv Mater, 2014, 26:3926-3930  doi: 10.1002/adma.201305206

    70. [70]

      Wang L, Zhang H K, Qin A J, Jin Q, Tang B Z, Ji J. Sci China Chem, 2016, 59:1609-1615  doi: 10.1007/s11426-016-0246-9

    71. [71]

      Wang Z K, Chen S J, Lam J W Y, Qin W, Kwok R T K, Xie N, Hu Q L, Tang B Z. J Am Chem Soc, 2013, 135:8238-8245
       

    72. [72]

      Yuan Y, Kwok R T K, Tang B Z, Liu B. Small, 2015, 11:4682-4690  doi: 10.1002/smll.201501498

  • 加载中
    1. [1]

      Pan Li Huguo Shen Cong Hua Jinjie Fang Xiangying Chi Quan Jiang Zichen Feng Ye Kang Bin Zheng . Synthesis and Characterization of an Aggregation-Induced Emission-Active Organic Cage Molecule: A Proposed Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(11): 337-345. doi: 10.12461/PKU.DXHX202502083

    2. [2]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    5. [5]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    6. [6]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    7. [7]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    8. [8]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    11. [11]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    14. [14]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    15. [15]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    16. [16]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    17. [17]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(0)
  • Abstract views(182)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return